Brain and Spine Institute, Paris, France.
Brain and Spine Institute, Paris, France; ETH, Zurich, Switzerland.
Neuroimage. 2015 Aug 15;117:202-21. doi: 10.1016/j.neuroimage.2015.05.041. Epub 2015 May 22.
In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients).
在这项工作中,我们提出了一种大脑-行为关系的数学处理方法,我们称之为行为动态因果建模或 bDCM。这种方法旨在根据大脑区域及其连接的相对贡献,将大脑对刺激的转化分解为行为结果。简而言之,bDCM 将大脑置于刺激和行为之间的相互作用中:行为结果源自(隐藏)神经网络的协调活动,其动力学由实验输入驱动。估计控制网络连接和可塑性的神经参数,可以有效地对大脑的输入-输出转换进行神经生物学约束逼近。换句话说,神经影像学数据本质上用于增强 bDCM 对输入-输出关系的分解的现实性。此外,事后人工损伤分析允许我们预测诱导的行为缺陷,并量化网络特征对引导输入-输出关系的重要性。这很重要,因为这使得我们能够弥合与脑损伤患者的神经心理学研究之间的差距。我们使用蒙特卡罗模拟验证了该方法的表面有效性,并使用来自抑制控制任务的经验 fMRI/行为数据验证了其预测有效性。最后,我们讨论了这项工作的有前途的应用,包括对功能退化(在健康大脑中)的评估和对损伤后功能恢复的预测(在神经患者中)。