Suppr超能文献

偏硅酸锂微晶玻璃的纳米力学行为

Nano-mechanical behaviour of lithium metasilicate glass-ceramic.

作者信息

Alao Abdur-Rasheed, Yin Ling

机构信息

Matter and Materials, College of Science, Technology and Engineering, James Cook University, Townsville 4811, QLD, Australia.

Matter and Materials, College of Science, Technology and Engineering, James Cook University, Townsville 4811, QLD, Australia.

出版信息

J Mech Behav Biomed Mater. 2015 Sep;49:162-74. doi: 10.1016/j.jmbbm.2015.05.002. Epub 2015 May 14.

Abstract

This paper reports the first study on the mechanical behavior of lithium metasilicate glass-ceramic using nanoindentation and in situ scanning probe imaging techniques. Indentation contact hardness, Hc, and Young's modulus, E, were measured at 10 mN peak load and 0.1-2 mN/s loading rates to understand the loading rate effect on its properties. Indentation imprints were analysed with the in situ scanning probe imaging to understand indentation mechanisms. The average contact hardness increased by 112% with the loading rate (ANOVA, p<0.05) while the Young's modulus showed the loading rate independence (ANOVA, p>0.05). A strain rate sensitivity model was applied to determine the intrinsic contact hardness. Extensive discontinuities and largest maximum, contact and final depths were also observed at the lowest loading rate. These phenomena corresponded to inhomogeneous shear-band flow and densification leading to the material strain softening. The in situ scanning probe images of indentation imprints showed plastic deformation at all loading rates and shear band-induced pileups at the lowest loading rate. With the increase in loading rate, the induced pile-ups decreased. The continuum model predicted the largest densified shear zone at the lowest loading rate. Finally, these results provide scientific insights into the abrasive machining responses of lithium metasilicate glass-ceramic during dental CAD/CAM processes using sharp diamond abrasives.

摘要

本文报道了首次使用纳米压痕和原位扫描探针成像技术对偏硅酸锂微晶玻璃力学行为进行的研究。在10 mN峰值载荷和0.1 - 2 mN/s加载速率下测量压痕接触硬度Hc和杨氏模量E,以了解加载速率对其性能的影响。利用原位扫描探针成像分析压痕印记,以了解压痕机制。平均接触硬度随加载速率增加了112%(方差分析,p<0.05),而杨氏模量显示出与加载速率无关(方差分析,p>0.05)。应用应变率敏感性模型来确定固有接触硬度。在最低加载速率下还观察到大量不连续性以及最大的最大深度、接触深度和最终深度。这些现象对应于不均匀的剪切带流动和致密化,导致材料应变软化。压痕印记的原位扫描探针图像显示在所有加载速率下均有塑性变形,在最低加载速率下有剪切带引起的堆积。随着加载速率的增加,诱导堆积减少。连续介质模型预测在最低加载速率下有最大的致密剪切区。最后,这些结果为使用尖锐金刚石磨料的牙科CAD/CAM过程中偏硅酸锂微晶玻璃的磨削加工响应提供了科学见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验