Suppr超能文献

基于时变时滞忆阻神经网络的有限时间同步。

Finite-time synchronization for memristor-based neural networks with time-varying delays.

机构信息

College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.

College of Mathematics and System Sciences, Xinjiang University, Urumqi, 830046, Xinjiang, PR China.

出版信息

Neural Netw. 2015 Sep;69:20-8. doi: 10.1016/j.neunet.2015.04.015. Epub 2015 May 11.

Abstract

Memristive network exhibits state-dependent switching behaviors due to the physical properties of memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time synchronization is considered for a class of memristor-based neural networks with time-varying delays. Based on the theory of differential equations with discontinuous right-hand side, several new sufficient conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are obtained by using analysis technique, finite time stability theorem and adding a suitable feedback controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a numerical example is given to show the effectiveness and feasibility of the obtained results.

摘要

忆阻网络由于忆阻器的物理特性表现出状态依赖的开关行为,这是模拟人脑功能的理想工具。在本文中,考虑了一类具有时变时滞的基于忆阻器的神经网络的有限时间同步。基于具有不连续右函数的微分方程理论,通过分析技术、有限时间稳定性定理和添加合适的反馈控制器,得到了确保基于忆阻器的混沌神经网络有限时间同步的几个新的充分条件。此外,还估计了同步的调整时间的上界。最后,通过一个数值例子验证了所得结果的有效性和可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验