Suppr超能文献

荟萃分析中终点相关性对 Q 和 I(2)的影响。

The impact of multiple endpoint dependency on Q and I(2) in meta-analysis.

机构信息

Florida State University, Educational Psychology and Learning Systems, Tallahassee, FL, 32306-4453, USA.

出版信息

Res Synth Methods. 2014 Sep;5(3):235-53. doi: 10.1002/jrsm.1110. Epub 2014 Feb 14.

Abstract

A common assumption in meta-analysis is that effect sizes are independent. When correlated effect sizes are analyzed using traditional univariate techniques, this assumption is violated. This research assesses the impact of dependence arising from treatment-control studies with multiple endpoints on homogeneity measures Q and I(2) in scenarios using the unbiased standardized-mean-difference effect size. Univariate and multivariate meta-analysis methods are examined. Conditions included different overall outcome effects, study sample sizes, numbers of studies, between-outcomes correlations, dependency structures, and ways of computing the correlation. The univariate approach used typical fixed-effects analyses whereas the multivariate approach used generalized least-squares (GLS) estimates of a fixed-effects model, weighted by the inverse variance-covariance matrix. Increased dependence among effect sizes led to increased Type I error rates from univariate models. When effect sizes were strongly dependent, error rates were drastically higher than nominal levels regardless of study sample size and number of studies. In contrast, using GLS estimation to account for multiple-endpoint dependency maintained error rates within nominal levels. Conversely, mean I(2) values were not greatly affected by increased amounts of dependency. Last, we point out that the between-outcomes correlation should be estimated as a pooled within-groups correlation rather than using a full-sample estimator that does not consider treatment/control group membership.

摘要

在荟萃分析中,一个常见的假设是效应大小是相互独立的。当使用传统的单变量技术分析相关的效应大小时,就违反了这个假设。本研究评估了来自具有多个终点的治疗-对照研究的相关性对均数差值效应大小的无偏标准化均数(unbiased standardized-mean-difference effect size)的同质性度量 Q 和 I(2) 的影响。研究考察了单变量和多变量荟萃分析方法。所包含的条件有不同的总体结局效应、研究样本量、研究数量、结局间相关性、依赖结构以及计算相关性的方法。单变量方法使用典型的固定效应分析,而多变量方法则使用固定效应模型的广义最小二乘(GLS)估计值,该值通过逆方差-协方差矩阵进行加权。效应大小之间的依赖性增加导致单变量模型的 I 型错误率增加。当效应大小高度相关时,无论研究样本量和研究数量如何,错误率都远远高于名义水平。相比之下,使用 GLS 估计来解释多终点相关性可以将误差率保持在名义水平内。相反,增加依赖性对平均 I(2) 值的影响不大。最后,我们指出,结局间的相关性应该作为一个群组内的相关系数进行估计,而不是使用不考虑治疗/对照组成员的全样本估计器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验