Suppr超能文献

通过工程化纳米药物开发个性化抗转移策略。

Development of individualized anti-metastasis strategies by engineering nanomedicines.

作者信息

He Qianjun, Guo Shengrong, Qian Zhiyong, Chen Xiaoyuan

机构信息

State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P. R. China.

Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.

出版信息

Chem Soc Rev. 2015 Oct 7;44(17):6258-6286. doi: 10.1039/c4cs00511b. Epub 2015 Jun 9.

Abstract

Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulae provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines.

摘要

转移是致命的,而且由于其比原发性肿瘤复杂得多,所以治疗起来也很困难。目前可用的抗转移方法远非最佳。多种纳米药物配方为开发应对转移的新策略和手段提供了大量机会。应当指出的是,个体化抗转移纳米药物不同于普通抗癌纳米药物,因为它们专门针对不同群体的恶性细胞。本文简要介绍了转移级联反应的特征,并提出了一系列基于纳米药物的抗转移策略,旨在阻断转移的每一步。此外,我们还简要介绍了几种有前景的纳米颗粒平台的优势及其构建先进个体化抗转移纳米药物的潜力。

相似文献

1
Development of individualized anti-metastasis strategies by engineering nanomedicines.
Chem Soc Rev. 2015 Oct 7;44(17):6258-6286. doi: 10.1039/c4cs00511b. Epub 2015 Jun 9.
2
Nanomedicine-Based Immunotherapy for the Treatment of Cancer Metastasis.
Adv Mater. 2019 Dec;31(49):e1904156. doi: 10.1002/adma.201904156. Epub 2019 Sep 30.
3
Combining Nanomedicine and Immunotherapy.
Acc Chem Res. 2019 Jun 18;52(6):1543-1554. doi: 10.1021/acs.accounts.9b00148. Epub 2019 May 23.
4
MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.
Adv Mater. 2014 Jan 22;26(3):391-411. doi: 10.1002/adma.201303123. Epub 2013 Oct 20.
5
Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma.
Molecules. 2020 Jan 23;25(3):490. doi: 10.3390/molecules25030490.
6
Unmet needs in developing nanoparticles for precision medicine.
Nanomedicine (Lond). 2017 Feb;12(4):271-274. doi: 10.2217/nnm-2016-0390. Epub 2017 Jan 17.
7
Nanomedicines for the treatment of hematological malignancies.
J Control Release. 2018 Oct 10;287:194-215. doi: 10.1016/j.jconrel.2018.08.034. Epub 2018 Aug 28.
8
Nanomedicine as an emerging platform for metastatic lung cancer therapy.
Cancer Metastasis Rev. 2015 Jun;34(2):291-301. doi: 10.1007/s10555-015-9554-4.
9
Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
AAPS PharmSciTech. 2020 May 14;21(4):132. doi: 10.1208/s12249-020-01691-3.
10
Advances of nanomedicines in breast cancer metastasis treatment targeting different metastatic stages.
Adv Drug Deliv Rev. 2021 Nov;178:113909. doi: 10.1016/j.addr.2021.113909. Epub 2021 Aug 2.

引用本文的文献

2
Personalized nanovaccines for treating solid cancer metastases.
J Hematol Oncol. 2024 Nov 28;17(1):115. doi: 10.1186/s13045-024-01628-4.
4
Nanoparticles for the Treatment of Bone Metastasis in Breast Cancer: Recent Advances and Challenges.
Int J Nanomedicine. 2024 Feb 23;19:1867-1886. doi: 10.2147/IJN.S442768. eCollection 2024.
5
Photoacid Generators for Biomedical Applications.
Adv Sci (Weinh). 2024 Feb;11(5):e2302875. doi: 10.1002/advs.202302875. Epub 2023 Dec 1.
6
Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens.
Anal Sci. 2024 Jan;40(1):199-211. doi: 10.1007/s44211-023-00445-y. Epub 2023 Oct 19.
8
Emerging indocyanine green-integrated nanocarriers for multimodal cancer therapy: a review.
Nanoscale Adv. 2021 Apr 15;3(12):3332-3352. doi: 10.1039/d1na00059d. eCollection 2021 Jun 15.
9
Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy.
Adv Healthc Mater. 2022 Dec;11(23):e2201214. doi: 10.1002/adhm.202201214. Epub 2022 Oct 17.

本文引用的文献

1
Treating cancer stem cells and cancer metastasis using glucose-coated gold nanoparticles.
Int J Nanomedicine. 2015 Mar 16;10:2065-77. doi: 10.2147/IJN.S72144. eCollection 2015.
3
Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery.
Proc Natl Acad Sci U S A. 2015 Feb 10;112(6):1827-32. doi: 10.1073/pnas.1424563112. Epub 2015 Jan 26.
4
Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia.
Cancer Cell. 2014 Nov 10;26(5):605-22. doi: 10.1016/j.ccell.2014.10.006.
6
RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer.
J Control Release. 2014 Dec 28;196:222-33. doi: 10.1016/j.jconrel.2014.10.012. Epub 2014 Oct 22.
7
Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens.
Nature. 2014 Nov 27;515(7528):577-81. doi: 10.1038/nature13988.
8
PD-1 blockade induces responses by inhibiting adaptive immune resistance.
Nature. 2014 Nov 27;515(7528):568-71. doi: 10.1038/nature13954.
9
Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients.
Nature. 2014 Nov 27;515(7528):563-7. doi: 10.1038/nature14011.
10
MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer.
Nature. 2014 Nov 27;515(7528):558-62. doi: 10.1038/nature13904.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验