van Hinsbergen Douwe J J, de Groot Lennart V, van Schaik Sebastiaan J, Spakman Wim, Bijl Peter K, Sluijs Appy, Langereis Cor G, Brinkhuis Henk
Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands.
University of Oxford e-Research Centre, Oxford, United Kingdom.
PLoS One. 2015 Jun 10;10(6):e0126946. doi: 10.1371/journal.pone.0126946. eCollection 2015.
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.
要对从特定地点获得的古气候信息进行现实评估,需要准确了解其相对于地球自转轴定义的古纬度。这对于正确评估沉积物沉积时该地点接收的太阳能量等诸多方面至关重要。原则上,任意地点的古纬度可通过构造板块重建来重构,这些重建(1)基于(海洋)磁异常恢复板块之间的相对运动,(2)使用基于全球视极移路径的古地磁参考系将所有板块相对于自转轴进行重建。尽管许多研究确实采用了高质量的相对板块重建,但在气候研究中使用古地磁参考系而非地幔参考系的必要性似乎未得到充分重视。在本文中,我们简要总结了板块构造重建理论及其针对古气候重建应用的参考系,并表明使用定义板块相对于地幔位置的地幔参考系而非古地磁参考系,可能会在古纬度上引入超过15°(>1500公里)的误差。这是因为地幔参考系无法约束或专门校正真极移的影响。我们使用最新的、最先进的板块重建来构建全球板块回路,并通过将此板块回路置于三条广泛使用的全球视极移路径中,开发了一个针对过去2亿年的在线、用户友好的古纬度计算器。作为一项创新,该计算器为古纬度估计值添加了误差条,可纳入气候建模。该计算器可在www.paleolatitude.org获取。我们通过展示始新世南纬高纬度地区明显广泛的海面温度分布如何部分地由比先前假设更广泛的古纬度站点分布来解释,说明了古纬度计算器的使用。