Suppr超能文献

在使用模拟退火算法优化土壤采样方案中整合电磁感应传感器数据。

Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

作者信息

Barca E, Castrignanò A, Buttafuoco G, De Benedetto D, Passarella G

机构信息

Water Research Institute (IRSA)-National Research Council (CNR), Bari, Italy,

出版信息

Environ Monit Assess. 2015 Jul;187(7):422. doi: 10.1007/s10661-015-4570-y. Epub 2015 Jun 12.

Abstract

Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The use of bulk EC a gradient as an exhaustive variable, known at any node of an interpolation grid, has allowed the optimization of the sampling scheme, distinguishing among areas with different priority levels.

摘要

土壤调查通常耗时、费力且成本高昂。优化采样方案能够在不降低甚至提高被调查属性准确性的情况下减少采样点数量。利用电磁感应(EMI)传感器记录的土壤表观电导率(ECa)图可有效用于指导土壤采样设计,以评估土壤湿度的空间变异性。一种使用田间尺度土壤表观电导率调查的方案已应用于普利亚地区(意大利东南部)的一块农田。空间模拟退火被用作一种方法,在考虑采样限制、田间边界和初步观测的情况下优化空间土壤采样方案。使用了三个优化标准。第一个标准(最短距离均值最小化,MMSD)通过最小化任意选择的点与其最近观测点之间距离的期望值,优化点观测在整个田间的分布;第二个标准(最短距离加权均值最小化,MWMSD)是MMSD的加权版本,它使用网格ECa数据的数字梯度作为加权函数;第三个标准(平均普通克里金方差均值,MAOKV)最小化目标变量的平均克里金估计方差。最后一个标准利用了先前试验中估计的土壤含水量变异函数模型。在一个实际案例中对这些程序或它们的组合进行了测试和比较。模拟退火由软件MSANOS实现,该软件能够通过增加或减少原始采样位置来定义或重新设计任何采样方案。输出结果包括计算出的采样方案、收敛时间和冷却定律,这对采样设计过程可能是非常宝贵的支持。所提出的方法在合理的计算时间内找到了最优解。将土壤表观电导率梯度用作在插值网格的任何节点都已知的详尽变量,使得能够优化采样方案,区分不同优先级水平的区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验