Yadav Indresh, Aswal V K, Kohlbrecher J
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
Laboratory for Neutron Scattering, Paul Scherrer Institut, CH-5232 PSI Villigen, Switzerland.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 May;91(5):052306. doi: 10.1103/PhysRevE.91.052306. Epub 2015 May 29.
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) studies have been carried out to investigate the effect of an electrolyte on the phase behavior of anionic silica nanoparticles with two globular proteins-cationic lysozyme [molecular weight (MW) 14.7 kDa] and anionic bovine serum albumin (MW 66.4 kDa). The results are compared with our earlier published work on similar systems without any electrolyte [I. Yadav, S. Kumar, V. K. Aswal, and J. Kohlbrecher, Phys. Rev. E 89, 032304 (2014)]. Both the nanoparticle-protein systems transform to two phase at lower concentration of protein in the presence of an electrolyte. The autocorrelation function in DLS suggests that the diffusion coefficient (D) of a nanoparticle-protein system decreases in approaching two phase with the increase in protein concentration. This variation in D can be attributed to increase in attractive interaction and/or overall increase in the size. Further, these two contributions (interaction and structure) are determined from the SANS data. The changes in the phase behavior of nanoparticle-protein systems in the presence of an electrolyte are explained in terms of modifications in both the repulsive and attractive components of interaction between nanoparticles. In a two-phase system individual silica nanoparticles coexist along with their fractal aggregates.
已开展小角中子散射(SANS)和动态光散射(DLS)研究,以探究电解质对带有两种球状蛋白质(阳离子溶菌酶,分子量14.7 kDa;阴离子牛血清白蛋白,分子量66.4 kDa)的阴离子二氧化硅纳米颗粒相行为的影响。将结果与我们之前发表的关于不含任何电解质的类似体系的研究工作[I. 亚达夫、S. 库马尔、V. K. 阿斯瓦尔和J. 科尔布雷彻,《物理评论E》89, 032304 (2014)]进行比较。在电解质存在的情况下,两种纳米颗粒 - 蛋白质体系在较低蛋白质浓度下都会转变为两相。DLS中的自相关函数表明,随着蛋白质浓度的增加,纳米颗粒 - 蛋白质体系的扩散系数(D)在接近两相时会降低。D的这种变化可归因于吸引相互作用的增加和/或尺寸的整体增加。此外,这两种贡献(相互作用和结构)是根据SANS数据确定的。从纳米颗粒间相互作用的排斥和吸引成分的改变方面,解释了电解质存在时纳米颗粒 - 蛋白质体系相行为的变化。在两相体系中,单个二氧化硅纳米颗粒与其分形聚集体共存。