Roujol Sébastien, Basha Tamer A, Weingärtner Sebastian, Akçakaya Mehmet, Berg Sophie, Manning Warren J, Nezafat Reza
Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA.
Biomedical Engineering Department, Cairo University, Giza, Egypt.
J Cardiovasc Magn Reson. 2015 Jun 12;17(1):46. doi: 10.1186/s12968-015-0141-1.
To evaluate and quantify the impact of a novel image-based motion correction technique in myocardial T2 mapping in terms of measurement reproducibility and spatial variability.
Twelve healthy adult subjects were imaged using breath-hold (BH), free breathing (FB), and free breathing with respiratory navigator gating (FB + NAV) myocardial T2 mapping sequences. Fifty patients referred for clinical CMR were imaged using the FB + NAV sequence. All sequences used a T2 prepared (T2prep) steady-state free precession acquisition. In-plane myocardial motion was corrected using an adaptive registration of varying contrast-weighted images for improved tissue characterization (ARCTIC). DICE similarity coefficient (DSC) and myocardial boundary errors (MBE) were measured to quantify the motion estimation accuracy in healthy subjects. T2 mapping reproducibility and spatial variability were evaluated in healthy subjects using 5 repetitions of the FB + NAV sequence with either 4 or 20 T2prep echo times (TE). Subjective T2 map quality was assessed in patients by an experienced reader using a 4-point scale (1-non diagnostic, 4-excellent).
ARCTIC led to increased DSC in BH data (0.85 ± 0.08 vs. 0.90 ± 0.02, p = 0.007), FB data (0.78 ± 0.13 vs. 0.90 ± 0.21, p < 0.001), and FB + NAV data (0.86 ± 0.05 vs. 0.90 ± 0.02, p = 0.002), and reduced MBE in BH data (0.90 ± 0.40 vs. 0.64 ± 0.19 mm, p = 0.005), FB data (1.21 ± 0.65 vs. 0.63 ± 0.10 mm, p < 0.001), and FB + NAV data (0.81 ± 0.21 vs. 0.63 ± 0.08 mm, p < 0.001). Improved reproducibility (4TE: 5.3 ± 2.5 ms vs. 4.0 ± 1.5 ms, p = 0.016; 20TE: 3.9 ± 2.3 ms vs. 2.2 ± 0.5 ms, p = 0.002), reduced spatial variability (4TE: 12.8 ± 3.5 ms vs. 10.3 ± 2.5 ms, p < 0.001; 20TE: 9.7 ± 3.5 ms vs. 7.5 ± 1.4 ms) and improved subjective score of T2 map quality (3.43 ± 0.79 vs. 3.69 ± 0.55, p < 0.001) were obtained using ARCTIC.
The ARCTIC technique substantially reduces spatial mis-alignment among T2-weighted images and improves the reproducibility and spatial variability of in-vivo T2 mapping.
评估并量化一种基于图像的新型运动校正技术在心肌T2 mapping中对测量可重复性和空间变异性的影响。
对12名健康成年受试者使用屏气(BH)、自由呼吸(FB)以及自由呼吸联合呼吸导航门控(FB + NAV)的心肌T2 mapping序列进行成像。对50名因临床需要进行心脏磁共振成像(CMR)检查的患者使用FB + NAV序列进行成像。所有序列均采用T2准备(T2prep)稳态自由进动采集。通过对不同对比加权图像进行自适应配准来校正平面内心肌运动,以改善组织特征描述(ARCTIC)。测量DICE相似系数(DSC)和心肌边界误差(MBE)以量化健康受试者的运动估计准确性。在健康受试者中,使用具有4个或20个T2prep回波时间(TE)的FB + NAV序列重复采集5次,评估T2 mapping的可重复性和空间变异性。由经验丰富的阅片者使用4分制量表(1分 - 非诊断性,4分 - 优秀)对患者的T2 map主观质量进行评估。
ARCTIC使BH数据的DSC增加(0.85 ± 0.08对0.90 ± 0.02,p = 0.007),FB数据的DSC增加(0.78 ± 0.13对0.90 ± 0.21,p < 0.001),FB + NAV数据的DSC增加(0.86 ± 0.05对0.90 ± 0.02,p = 0.002),并使BH数据的MBE降低(0.90 ± 0.40对0.64 ± 0.19 mm,p = 0.005),FB数据的MBE降低(1.21 ± 0.65对0.63 ± 0.10 mm,p < 0.001),FB + NAV数据的MBE降低(0.81 ± 0.21对0.63 ± 0.08 mm,p < 0.001)。使用ARCTIC可提高可重复性(4TE:5.3 ± 2.5 ms对4.0 ± 1.5 ms,p = 0.016;20TE:3.9 ± 2.3 ms对2.2 ± 0.5 ms,p = 0.002),降低空间变异性(4TE:12.8 ± 3.5 ms对1所0.3 ± 2.5 ms,p < 0.001;20TE:9.7 ± 3.5 ms对7.5 ± 1.4 ms),并提高T2 map质量的主观评分(3.43 ± 0.79对3.69 ± 0.55,p < 0.001)。
ARCTIC技术可大幅减少T2加权图像之间的空间错位,并提高体内T2 mapping的可重复性和空间变异性。