Akpinar Bala Ani, Magni Federica, Yuce Meral, Lucas Stuart J, Šimková Hana, Šafář Jan, Vautrin Sonia, Bergès Hélène, Cattonaro Federica, Doležel Jaroslav, Budak Hikmet
Sabanci University Nanotechnology Research and Application Centre (SUNUM), Sabanci University, Universite Cad. Orta Mah. No: 27, Tuzla, 34956, Istanbul, Turkey.
Instituto di Genomica Applicata, Via J.Linussio 51, Udine, 33100, Italy.
BMC Genomics. 2015 Jun 13;16(1):453. doi: 10.1186/s12864-015-1641-y.
The substantially large bread wheat genome, organized into highly similar three sub-genomes, renders genomic research challenging. The construction of BAC-based physical maps of individual chromosomes reduces the complexity of this allohexaploid genome, enables elucidation of gene space and evolutionary relationships, provides tools for map-based cloning, and serves as a framework for reference sequencing efforts. In this study, we constructed the first comprehensive physical map of wheat chromosome arm 5DS, thereby exploring its gene space organization and evolution.
The physical map of 5DS was comprised of 164 contigs, of which 45 were organized into 21 supercontigs, covering 176 Mb with an N50 value of 2,173 kb. Fifty-eight of the contigs were larger than 1 Mb, with the largest contig spanning 6,649 kb. A total of 1,864 molecular markers were assigned to the map at a density of 10.5 markers/Mb, anchoring 100 of the 120 contigs (>5 clones) that constitute ~95 % of the cumulative length of the map. Ordering of 80 contigs along the deletion bins of chromosome arm 5DS revealed small-scale breaks in syntenic blocks. Analysis of the gene space of 5DS suggested an increasing gradient of genes organized in islands towards the telomere, with the highest gene density of 5.17 genes/Mb in the 0.67-0.78 deletion bin, 1.4 to 1.6 times that of all other bins.
Here, we provide a chromosome-specific view into the organization and evolution of the D genome of bread wheat, in comparison to one of its ancestors, revealing recent genome rearrangements. The high-quality physical map constructed in this study paves the way for the assembly of a reference sequence, from which breeding efforts will greatly benefit.
面包小麦基因组相当庞大,由高度相似的三个亚基因组组成,这使得基因组研究颇具挑战性。构建基于细菌人工染色体(BAC)的单个染色体物理图谱可降低这种异源六倍体基因组的复杂性,有助于阐明基因空间和进化关系,为图位克隆提供工具,并为参考测序工作提供框架。在本研究中,我们构建了小麦染色体臂5DS的首个全面物理图谱,从而探究其基因空间组织和进化。
5DS的物理图谱由164个重叠群组成,其中45个被组织成21个超级重叠群,覆盖176 Mb,N50值为2173 kb。58个重叠群大于1 Mb,最大的重叠群跨度为6649 kb。总共1864个分子标记以10.5个标记/Mb的密度被定位到该图谱上,锚定了构成图谱累积长度约95%的120个重叠群(>5个克隆)中的100个。沿着染色体臂5DS的缺失 bins 对80个重叠群进行排序,揭示了同线性块中的小规模断裂。对5DS基因空间的分析表明,在朝着端粒方向,以岛屿形式组织的基因呈递增梯度,在0.67 - 0.78缺失 bin 中基因密度最高,为5.17个基因/Mb,是所有其他 bin 的1.4至1.6倍。
在此,我们提供了面包小麦D基因组与其一个祖先相比的组织和进化的染色体特异性视图,揭示了近期的基因组重排。本研究构建的高质量物理图谱为参考序列的组装铺平了道路,育种工作将从中大大受益。