Suppr超能文献

针对在隐性营养不良性大疱性表皮松解症中使用自体疗法的基因编辑。

Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa.

作者信息

Perdoni Christopher, Osborn Mark J, Tolar Jakub

机构信息

Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn.

Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn.

出版信息

Transl Res. 2016 Feb;168:50-58. doi: 10.1016/j.trsl.2015.05.008. Epub 2015 May 27.

Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by mutations in the COL7A1 gene that result in absent or dysfunctional type VII collagen protein production. Clinically, RDEB manifests as early and severe chronic cutaneous blistering, damage to internal epithelium, an increased risk for squamous cell carcinoma, and an overall reduced life expectancy. Recent localized and systemic treatments have shown promise for lessening the disease severity in RDEB, but the concept of ex vivo therapy would allow a patient's own cells to be engineered to express functional type VII collagen. Here, we review gene delivery and editing platforms and their application toward the development of next-generation treatments designed to correct the causative genetic defects of RDEB.

摘要

隐性营养不良型大疱性表皮松解症(RDEB)是一种由COL7A1基因突变引起的疾病,该突变导致VII型胶原蛋白的产生缺失或功能失调。临床上,RDEB表现为早期严重的慢性皮肤水疱形成、内部上皮损伤、鳞状细胞癌风险增加以及总体预期寿命缩短。最近的局部和全身治疗已显示出减轻RDEB疾病严重程度的前景,但体外治疗的概念将使患者自身的细胞经过改造后表达功能性VII型胶原蛋白。在此,我们综述了基因递送和编辑平台及其在开发旨在纠正RDEB致病基因缺陷的下一代治疗方法中的应用。

相似文献

1
Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa.
Transl Res. 2016 Feb;168:50-58. doi: 10.1016/j.trsl.2015.05.008. Epub 2015 May 27.
6
Therapeutic base editing and prime editing of COL7A1 mutations in recessive dystrophic epidermolysis bullosa.
Mol Ther. 2022 Aug 3;30(8):2664-2679. doi: 10.1016/j.ymthe.2022.06.005. Epub 2022 Jun 10.
7
Functional correction of type VII collagen expression in dystrophic epidermolysis bullosa.
J Invest Dermatol. 2011 Jan;131(1):74-83. doi: 10.1038/jid.2010.249. Epub 2010 Aug 19.
8
Gene-Corrected Fibroblast Therapy for Recessive Dystrophic Epidermolysis Bullosa using a Self-Inactivating COL7A1 Retroviral Vector.
J Invest Dermatol. 2016 Jul;136(7):1346-1354. doi: 10.1016/j.jid.2016.02.811. Epub 2016 Mar 16.
9
Patent landscape of molecular and cellular targeted therapies for recessive dystrophic epidermolysis bullosa.
Expert Opin Ther Pat. 2019 May;29(5):327-337. doi: 10.1080/13543776.2019.1608181. Epub 2019 Apr 24.

引用本文的文献

2
Advances in Treatments for Epidermolysis Bullosa (EB): Emphasis on Stem Cell-Based Therapy.
Stem Cell Rev Rep. 2024 Jul;20(5):1200-1212. doi: 10.1007/s12015-024-10697-4. Epub 2024 Mar 2.
3
Clinical trial of ABCB5+ mesenchymal stem cells for recessive dystrophic epidermolysis bullosa.
JCI Insight. 2021 Nov 22;6(22):e151922. doi: 10.1172/jci.insight.151922.
4
Pathogenetic Therapy of Epidermolysis Bullosa: Current State and Prospects.
Bull Exp Biol Med. 2021 May;171(1):109-121. doi: 10.1007/s10517-021-05182-8. Epub 2021 May 29.
6
Epidermolysis bullosa: Advances in research and treatment.
Exp Dermatol. 2019 Oct;28(10):1176-1189. doi: 10.1111/exd.13979. Epub 2019 Aug 8.
7
Montagna Symposium 2017-Precision Dermatology: Next Generation Prevention, Diagnosis, and Treatment.
J Invest Dermatol. 2018 Jun;138(6):1243-1248. doi: 10.1016/j.jid.2018.02.039. Epub 2018 May 2.
8
Genome-editing Technologies for Gene and Cell Therapy.
Mol Ther. 2016 Mar;24(3):430-46. doi: 10.1038/mt.2016.10. Epub 2016 Jan 12.

本文引用的文献

1
A biologic Velcro patch.
N Engl J Med. 2015 Jan 22;372(4):382-4. doi: 10.1056/NEJMcibr1414709.
2
Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors.
Nat Biotechnol. 2015 Feb;33(2):175-8. doi: 10.1038/nbt.3127. Epub 2015 Jan 19.
3
Fanconi anemia gene editing by the CRISPR/Cas9 system.
Hum Gene Ther. 2015 Feb;26(2):114-26. doi: 10.1089/hum.2014.111.
4
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases.
Nat Biotechnol. 2015 Feb;33(2):187-197. doi: 10.1038/nbt.3117. Epub 2014 Dec 16.
5
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases.
Nat Biotechnol. 2015 Feb;33(2):179-86. doi: 10.1038/nbt.3101. Epub 2014 Dec 15.
6
Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa.
Sci Transl Med. 2014 Nov 26;6(264):264ra164. doi: 10.1126/scitranslmed.3009342.
7
Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa.
Sci Transl Med. 2014 Nov 26;6(264):264ra163. doi: 10.1126/scitranslmed.3009540.
9
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease.
Nature. 2014 Sep 25;513(7519):569-73. doi: 10.1038/nature13579. Epub 2014 Jul 27.
10
Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9.
mBio. 2014 May 13;5(3):e01114-14. doi: 10.1128/mBio.01114-14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验