Shi Chunmei, Zhao Lingling, Wang Junjie, Zhang Chiping, Su Xiaohong, Ma Peijun
Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China.
School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China.
J Math Biol. 2016 Apr;72(5):1225-54. doi: 10.1007/s00285-015-0909-9. Epub 2015 Jun 18.
Tracking micro-objects in the noisy microscopy image sequences is important for the analysis of dynamic processes in biological objects. In this paper, an automated tracking framework is proposed to extract the trajectories of micro-objects. This framework uses a probability hypothesis density particle filtering (PF-PHD) tracker to implement a recursive state estimation and trajectories association. In order to increase the efficiency of this approach, an elliptical target model is presented to describe the micro-objects using shape parameters instead of point-like targets which may cause inaccurate tracking. A novel likelihood function, not only covering the spatiotemporal distance but also dealing with geometric shape function based on the Mahalanobis norm, is proposed to improve the accuracy of particle weight in the update process of the PF-PHD tracker. Using this framework, a larger number of tracks are obtained. The experiments are performed on simulated data of microtubule movements and real mouse stem cells. We compare the PF-PHD tracker with the nearest neighbor method and the multiple hypothesis tracking method. Our PF-PHD tracker can simultaneously track hundreds of micro-objects in the microscopy image sequence.
在有噪声的显微镜图像序列中跟踪微观物体对于分析生物物体中的动态过程非常重要。本文提出了一种自动跟踪框架来提取微观物体的轨迹。该框架使用概率假设密度粒子滤波(PF-PHD)跟踪器来实现递归状态估计和轨迹关联。为了提高这种方法的效率,提出了一种椭圆目标模型,使用形状参数来描述微观物体,而不是可能导致跟踪不准确的点状目标。提出了一种新颖的似然函数,不仅涵盖时空距离,还基于马氏范数处理几何形状函数,以提高PF-PHD跟踪器更新过程中粒子权重的准确性。使用该框架获得了更多的轨迹。实验在微管运动的模拟数据和真实小鼠干细胞上进行。我们将PF-PHD跟踪器与最近邻方法和多假设跟踪方法进行了比较。我们的PF-PHD跟踪器可以在显微镜图像序列中同时跟踪数百个微观物体。