Suppr超能文献

用于成像分类的空间加权主成分分析

Spatially Weighted Principal Component Analysis for Imaging Classification.

作者信息

Guo Ruixin, Ahn Mihye, Zhu Hongtu

机构信息

Department of Biostatistics and Informatics, University of Colorado School of Public Health, University of North Carolina at Chapel Hill.

Department of Biostatistics and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill.

出版信息

J Comput Graph Stat. 2015 Jan;24(1):274-296. doi: 10.1080/10618600.2014.912135.

Abstract

The aim of this paper is to develop a supervised dimension reduction framework, called Spatially Weighted Principal Component Analysis (SWPCA), for high dimensional imaging classification. Two main challenges in imaging classification are the high dimensionality of the feature space and the complex spatial structure of imaging data. In SWPCA, we introduce two sets of novel weights including global and local spatial weights, which enable a selective treatment of individual features and incorporation of the spatial structure of imaging data and class label information. We develop an e cient two-stage iterative SWPCA algorithm and its penalized version along with the associated weight determination. We use both simulation studies and real data analysis to evaluate the finite-sample performance of our SWPCA. The results show that SWPCA outperforms several competing principal component analysis (PCA) methods, such as supervised PCA (SPCA), and other competing methods, such as sparse discriminant analysis (SDA).

摘要

本文的目的是开发一种用于高维成像分类的监督降维框架,称为空间加权主成分分析(SWPCA)。成像分类中的两个主要挑战是特征空间的高维性以及成像数据复杂的空间结构。在SWPCA中,我们引入了两组新颖的权重,包括全局和局部空间权重,这使得能够对各个特征进行选择性处理,并纳入成像数据的空间结构和类别标签信息。我们开发了一种高效的两阶段迭代SWPCA算法及其惩罚版本以及相关的权重确定方法。我们使用模拟研究和实际数据分析来评估SWPCA的有限样本性能。结果表明,SWPCA优于几种竞争的主成分分析(PCA)方法,如监督主成分分析(SPCA),以及其他竞争方法,如稀疏判别分析(SDA)。

相似文献

1
Spatially Weighted Principal Component Analysis for Imaging Classification.
J Comput Graph Stat. 2015 Jan;24(1):274-296. doi: 10.1080/10618600.2014.912135.
2
MWPCR: Multiscale Weighted Principal Component Regression for High-dimensional Prediction.
J Am Stat Assoc. 2017;112(519):1009-1021. doi: 10.1080/01621459.2016.1261710. Epub 2016 Dec 16.
3
Joint Principal Component and Discriminant Analysis for Dimensionality Reduction.
IEEE Trans Neural Netw Learn Syst. 2020 Feb;31(2):433-444. doi: 10.1109/TNNLS.2019.2904701. Epub 2019 May 20.
4
Supervised Discriminative Sparse PCA for Com-Characteristic Gene Selection and Tumor Classification on Multiview Biological Data.
IEEE Trans Neural Netw Learn Syst. 2019 Oct;30(10):2926-2937. doi: 10.1109/TNNLS.2019.2893190. Epub 2019 Feb 22.
5
Principal component-based feature selection for tumor classification.
Biomed Mater Eng. 2015;26 Suppl 1:S2011-7. doi: 10.3233/BME-151505.
6
Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty.
IEEE Trans Med Imaging. 2018 Feb;37(2):396-407. doi: 10.1109/TMI.2017.2749140. Epub 2017 Sep 4.
7
Incorporating biological information in sparse principal component analysis with application to genomic data.
BMC Bioinformatics. 2017 Jul 11;18(1):332. doi: 10.1186/s12859-017-1740-7.
9
Comparison among dimensionality reduction techniques based on Random Projection for cancer classification.
Comput Biol Chem. 2016 Dec;65:165-172. doi: 10.1016/j.compbiolchem.2016.09.010. Epub 2016 Sep 21.
10
Spatially Weighted Principal Component Regression for High-Dimensional Prediction.
Inf Process Med Imaging. 2015;24:758-69. doi: 10.1007/978-3-319-19992-4_60.

引用本文的文献

1
Logistic regression with image covariates via the combination of L1 and Sobolev regularizations.
PLoS One. 2020 Jun 26;15(6):e0234975. doi: 10.1371/journal.pone.0234975. eCollection 2020.
2
SMAC: Spatial multi-category angle-based classifier for high-dimensional neuroimaging data.
Neuroimage. 2018 Jul 15;175:230-245. doi: 10.1016/j.neuroimage.2018.03.040. Epub 2018 Mar 27.
3
MWPCR: Multiscale Weighted Principal Component Regression for High-dimensional Prediction.
J Am Stat Assoc. 2017;112(519):1009-1021. doi: 10.1080/01621459.2016.1261710. Epub 2016 Dec 16.
4
Feature Extraction and Classification on Esophageal X-Ray Images of Xinjiang Kazak Nationality.
J Healthc Eng. 2017;2017:4620732. doi: 10.1155/2017/4620732. Epub 2017 Apr 4.
5
Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials.
Alzheimers Dement. 2017 Apr;13(4):e1-e85. doi: 10.1016/j.jalz.2016.11.007. Epub 2017 Mar 22.

本文引用的文献

1
Tensor Regression with Applications in Neuroimaging Data Analysis.
J Am Stat Assoc. 2013;108(502):540-552. doi: 10.1080/01621459.2013.776499.
2
Robust deformable-surface-based skull-stripping for large-scale studies.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):635-42. doi: 10.1007/978-3-642-23626-6_78.
3
Multiscale Adaptive Regression Models for Neuroimaging Data.
J R Stat Soc Series B Stat Methodol. 2011 Sep;73(4):559-578. doi: 10.1111/j.1467-9868.2010.00767.x.
4
A weighted principal component analysis and its application to gene expression data.
IEEE/ACM Trans Comput Biol Bioinform. 2011 Jan-Mar;8(1):246-52. doi: 10.1109/TCBB.2009.61.
5
On Consistency and Sparsity for Principal Components Analysis in High Dimensions.
J Am Stat Assoc. 2009 Jun 1;104(486):682-693. doi: 10.1198/jasa.2009.0121.
6
Imaging genetics and development: challenges and promises.
Hum Brain Mapp. 2010 Jun;31(6):838-51. doi: 10.1002/hbm.21047.
7
Sparse partial least squares classification for high dimensional data.
Stat Appl Genet Mol Biol. 2010;9(1):Article17. doi: 10.2202/1544-6115.1492. Epub 2010 Mar 3.
8
Modalities, modes, and models in functional neuroimaging.
Science. 2009 Oct 16;326(5951):399-403. doi: 10.1126/science.1174521.
9
Geostatistical analysis in clustering fMRI time series.
Stat Med. 2009 Aug 30;28(19):2490-508. doi: 10.1002/sim.3626.
10
A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis.
Biostatistics. 2009 Jul;10(3):515-34. doi: 10.1093/biostatistics/kxp008. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验