Suppr超能文献

用纤连蛋白片段进行简单涂层可增强健康和骨质疏松大鼠中不锈钢螺钉的骨整合。

Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats.

作者信息

Agarwal Rachit, González-García Cristina, Torstrick Brennan, Guldberg Robert E, Salmerón-Sánchez Manuel, García Andrés J

机构信息

Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.

Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA; Biomedical Engineering Research Division, University of Glasgow, Glasgow, UK.

出版信息

Biomaterials. 2015 Sep;63:137-45. doi: 10.1016/j.biomaterials.2015.06.025. Epub 2015 Jun 15.

Abstract

Metal implants are widely used to provide structural support and stability in current surgical treatments for bone fractures, spinal fusions, and joint arthroplasties as well as craniofacial and dental applications. Early implant-bone mechanical fixation is an important requirement for the successful performance of such implants. However, adequate osseointegration has been difficult to achieve especially in challenging disease states like osteoporosis due to reduced bone mass and strength. Here, we present a simple coating strategy based on passive adsorption of FN7-10, a recombinant fragment of human fibronectin encompassing the major cell adhesive, integrin-binding site, onto 316-grade stainless steel (SS). FN7-10 coating on SS surfaces promoted α5β1 integrin-dependent adhesion and osteogenic differentiation of human mesenchymal stem cells. FN7-10-coated SS screws increased bone-implant mechanical fixation compared to uncoated screws by 30% and 45% at 1 and 3 months, respectively, in healthy rats. Importantly, FN7-10 coating significantly enhanced bone-screw fixation by 57% and 32% at 1 and 3 months, respectively, and bone-implant ingrowth by 30% at 3 months compared to uncoated screws in osteoporotic rats. These coatings are easy to apply intra-operatively, even to implants with complex geometries and structures, facilitating the potential for rapid translation to clinical settings.

摘要

金属植入物在当前用于治疗骨折、脊柱融合、关节置换以及颅面和牙科应用的外科手术中被广泛用于提供结构支撑和稳定性。早期植入物与骨的机械固定是此类植入物成功发挥作用的重要要求。然而,由于骨量和强度降低,尤其是在骨质疏松等具有挑战性的疾病状态下,实现充分的骨整合一直很困难。在此,我们提出一种基于将FN7-10(人纤连蛋白的重组片段,包含主要的细胞粘附、整合素结合位点)被动吸附到316级不锈钢(SS)上的简单涂层策略。SS表面的FN7-10涂层促进了人骨髓间充质干细胞的α5β1整合素依赖性粘附和成骨分化。在健康大鼠中,与未涂层的螺钉相比,FN7-10涂层的SS螺钉在1个月和3个月时分别使骨与植入物的机械固定增加了30%和45%。重要的是,与骨质疏松大鼠中未涂层的螺钉相比,FN7-10涂层在1个月和3个月时分别使骨与螺钉的固定显著增强了57%和32%,并且在3个月时使骨向植入物内生长增加了30%。这些涂层易于在手术中应用,甚至可应用于具有复杂几何形状和结构的植入物,有助于快速转化到临床环境中。

相似文献

1
Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats.
Biomaterials. 2015 Sep;63:137-45. doi: 10.1016/j.biomaterials.2015.06.025. Epub 2015 Jun 15.
3
Engineered protein coatings to improve the osseointegration of dental and orthopaedic implants.
Biomaterials. 2016 Mar;83:269-82. doi: 10.1016/j.biomaterials.2015.12.030. Epub 2016 Jan 6.
4
Calcium-phosphate-coated oral implants promote osseointegration in osteoporosis.
J Dent Res. 2013 Nov;92(11):982-8. doi: 10.1177/0022034513505769. Epub 2013 Sep 20.
5
Biomolecular surface coating to enhance orthopaedic tissue healing and integration.
Biomaterials. 2007 Jul;28(21):3228-35. doi: 10.1016/j.biomaterials.2007.04.003. Epub 2007 Apr 5.
6
Bisphosphonate coating might improve fixation of dental implants in the maxilla: a pilot study.
Int J Oral Maxillofac Surg. 2010 Jul;39(7):673-7. doi: 10.1016/j.ijom.2010.04.002. Epub 2010 May 7.
8
Bone quality around bioactive silica-based coated stainless steel implants: analysis by micro-Raman, XRF and XAS techniques.
J Struct Biol. 2013 Nov;184(2):164-72. doi: 10.1016/j.jsb.2013.09.016. Epub 2013 Sep 27.
9
Potential mechanism for osseointegration of dental implants in Zucker diabetic fatty rats.
Br J Oral Maxillofac Surg. 2015 Oct;53(8):748-53. doi: 10.1016/j.bjoms.2015.05.023. Epub 2015 Jun 17.
10
Surface immobilized bisphosphonate improves stainless-steel screw fixation in rats.
Biomaterials. 2004 May;25(11):2133-8. doi: 10.1016/j.biomaterials.2003.08.049.

引用本文的文献

1
Biomolecule-functionalized dental implant surfaces: Towards augmenting soft tissue integration.
Bioact Mater. 2025 Jul 26;53:540-590. doi: 10.1016/j.bioactmat.2025.07.005. eCollection 2025 Nov.
2
Evaluation of Osteoconductive and Antimicrobial Properties of Novel Graphene on Dental Implants: An In Vitro Study.
Cureus. 2024 Feb 14;16(2):e54172. doi: 10.7759/cureus.54172. eCollection 2024 Feb.
3
Implant Surface Technologies to Promote Spinal Fusion: A Narrative Review.
Int J Spine Surg. 2023 Dec 27;17(S3):S35-S43. doi: 10.14444/8559.
4
Modification of titanium orthopedic implants with bioactive glass: a systematic review of and studies.
Front Bioeng Biotechnol. 2023 Nov 15;11:1269223. doi: 10.3389/fbioe.2023.1269223. eCollection 2023.
5
Guiding Fibroblast Activation Using an RGD-Mutated Heparin Binding II Fragment of Fibronectin for Gingival Titanium Integration.
Adv Healthc Mater. 2023 Aug;12(21):e2203307. doi: 10.1002/adhm.202203307. Epub 2023 May 10.
6
Roles of focal adhesion proteins in skeleton and diseases.
Acta Pharm Sin B. 2023 Mar;13(3):998-1013. doi: 10.1016/j.apsb.2022.09.020. Epub 2022 Oct 3.
8
Antiresorptive therapy and dental implant survival: an up to 20-year retrospective cohort study in women.
Clin Oral Investig. 2022 Nov;26(11):6569-6582. doi: 10.1007/s00784-022-04609-4. Epub 2022 Aug 24.
10
3D-printed NIR-responsive shape memory polyurethane/magnesium scaffolds with tight-contact for robust bone regeneration.
Bioact Mater. 2021 Dec 31;16:218-231. doi: 10.1016/j.bioactmat.2021.12.032. eCollection 2022 Oct.

本文引用的文献

2
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair.
Adv Drug Deliv Rev. 2015 Nov 1;94:53-62. doi: 10.1016/j.addr.2015.03.013. Epub 2015 Apr 8.
4
Risk of atypical femoral fracture during and after bisphosphonate use.
N Engl J Med. 2014 Sep 4;371(10):974-6. doi: 10.1056/NEJMc1403799.
5
Fractures in geriatric mice show decreased callus expansion and bone volume.
Clin Orthop Relat Res. 2014 Nov;472(11):3523-32. doi: 10.1007/s11999-014-3829-x. Epub 2014 Aug 9.
6
Polyelectrolyte multilayer-calcium phosphate composite coatings for metal implants.
Biomacromolecules. 2014 Oct 13;15(10):3511-21. doi: 10.1021/bm5006245. Epub 2014 Aug 29.
7
Targeting integrins to promote bone formation and repair.
Nat Rev Endocrinol. 2013 May;9(5):288-95. doi: 10.1038/nrendo.2013.4. Epub 2013 Jan 29.
8
A bisphosphonate-coating improves the fixation of metal implants in human bone. A randomized trial of dental implants.
Bone. 2012 May;50(5):1148-51. doi: 10.1016/j.bone.2012.02.001. Epub 2012 Feb 10.
9
Surface immobilized zoledronate improves screw fixation in rat bone: a new method for the coating of metal implants.
J Mater Sci Mater Med. 2010 Nov;21(11):3029-37. doi: 10.1007/s10856-010-4154-x. Epub 2010 Sep 21.
10
Priming integrin alpha5 promotes human mesenchymal stromal cell osteoblast differentiation and osteogenesis.
Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18587-91. doi: 10.1073/pnas.0812334106. Epub 2009 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验