Suppr超能文献

游泳肌肉为大口黑鲈的吸食式摄食提供动力。

Swimming muscles power suction feeding in largemouth bass.

作者信息

Camp Ariel L, Roberts Thomas J, Brainerd Elizabeth L

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912.

出版信息

Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8690-5. doi: 10.1073/pnas.1508055112. Epub 2015 Jun 22.

Abstract

Most aquatic vertebrates use suction to capture food, relying on rapid expansion of the mouth cavity to accelerate water and food into the mouth. In ray-finned fishes, mouth expansion is both fast and forceful, and therefore requires considerable power. However, the cranial muscles of these fishes are relatively small and may not be able to produce enough power for suction expansion. The axial swimming muscles of these fishes also attach to the feeding apparatus and have the potential to generate mouth expansion. Because of their large size, these axial muscles could contribute substantial power to suction feeding. To determine whether suction feeding is powered primarily by axial muscles, we measured the power required for suction expansion in largemouth bass and compared it to the power capacities of the axial and cranial muscles. Using X-ray reconstruction of moving morphology (XROMM), we generated 3D animations of the mouth skeleton and created a dynamic digital endocast to measure the rate of mouth volume expansion. This time-resolved expansion rate was combined with intraoral pressure recordings to calculate the instantaneous power required for suction feeding. Peak expansion powers for all but the weakest strikes far exceeded the maximum power capacity of the cranial muscles. The axial muscles did not merely contribute but were the primary source of suction expansion power and generated up to 95% of peak expansion power. The recruitment of axial muscle power may have been crucial for the evolution of high-power suction feeding in ray-finned fishes.

摘要

大多数水生脊椎动物利用吸力捕获食物,依靠口腔的快速扩张将水和食物加速吸入口腔。在硬骨鱼类中,口腔扩张迅速且有力,因此需要相当大的力量。然而,这些鱼类的头部肌肉相对较小,可能无法产生足够的力量用于吸力扩张。这些鱼类的轴向游泳肌肉也附着在摄食器官上,有产生口腔扩张的潜力。由于其体积较大,这些轴向肌肉可为吸力摄食贡献相当大的力量。为了确定吸力摄食是否主要由轴向肌肉提供动力,我们测量了大口黑鲈吸力扩张所需的力量,并将其与轴向肌肉和头部肌肉的力量产生能力进行比较。利用运动形态的X射线重建(XROMM),我们生成了口腔骨骼的3D动画,并创建了一个动态数字内腔模型来测量口腔容积扩张的速率。这个时间分辨的扩张速率与口腔内压力记录相结合,以计算吸力摄食所需的瞬时力量。除了最弱的攻击外,所有攻击的峰值扩张力量都远远超过了头部肌肉的最大功率产生能力。轴向肌肉不仅做出了贡献,而且是吸力扩张力量的主要来源,产生了高达95%的峰值扩张力量。轴向肌肉力量的募集可能对硬骨鱼类高功率吸力摄食的进化至关重要。

相似文献

1
Swimming muscles power suction feeding in largemouth bass.
Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8690-5. doi: 10.1073/pnas.1508055112. Epub 2015 Jun 22.
2
Role of axial muscles in powering mouth expansion during suction feeding in largemouth bass (Micropterus salmoides).
J Exp Biol. 2014 Apr 15;217(Pt 8):1333-45. doi: 10.1242/jeb.095810. Epub 2013 Dec 20.
3
Fishes can use axial muscles as anchors or motors for powerful suction feeding.
J Exp Biol. 2020 Sep 18;223(Pt 18):jeb225649. doi: 10.1242/jeb.225649.
4
Reevaluating Musculoskeletal Linkages in Suction-Feeding Fishes with X-Ray Reconstruction of Moving Morphology (XROMM).
Integr Comp Biol. 2015 Jul;55(1):36-47. doi: 10.1093/icb/icv034. Epub 2015 May 13.
5
7
Dual function of epaxial musculature for swimming and suction feeding in largemouth bass.
Proc Biol Sci. 2020 Jan 29;287(1919):20192631. doi: 10.1098/rspb.2019.2631. Epub 2020 Jan 22.
8
Bifunctional Role of the Sternohyoideus Muscle During Suction Feeding in Striped Surfperch, .
Integr Org Biol. 2020 Jul 29;2(1):obaa021. doi: 10.1093/iob/obaa021. eCollection 2020.
10
Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish.
J Theor Biol. 2015 May 7;372:159-67. doi: 10.1016/j.jtbi.2015.03.001. Epub 2015 Mar 10.

引用本文的文献

1
Cranial kinematics and prey-type effects in feeding strikes.
Proc Biol Sci. 2025 Apr;292(2045):20242542. doi: 10.1098/rspb.2024.2542. Epub 2025 Apr 23.
2
New insights into chronic ankle instability: an evaluation of three-dimensional motion and stability of the ankle joint complex.
Front Bioeng Biotechnol. 2025 Mar 26;13:1556291. doi: 10.3389/fbioe.2025.1556291. eCollection 2025.
3
Precision and accuracy of the dynamic endocast method for measuring volume changes in XROMM studies.
J Exp Biol. 2025 Feb 15;228(4). doi: 10.1242/jeb.249420. Epub 2025 Feb 19.
5
Axial muscle-fibre orientations in larval zebrafish.
J Anat. 2025 Apr;246(4):517-533. doi: 10.1111/joa.14161. Epub 2024 Nov 18.
6
Beyond power limits: the kinetic energy capacity of skeletal muscle.
J Exp Biol. 2024 Nov 1;227(21). doi: 10.1242/jeb.247150. Epub 2024 Oct 18.
8
Feeding kinematics of a surgeonfish reveal novel functions and relationships to reef substrata.
Commun Biol. 2024 Jan 3;7(1):13. doi: 10.1038/s42003-023-05696-z.
9
What good is a measure of muscle length? The how and why of direct measurements of skeletal muscle motion.
J Biomech. 2023 Aug;157:111709. doi: 10.1016/j.jbiomech.2023.111709. Epub 2023 Jul 1.
10
Emerging biological insights enabled by high-resolution 3D motion data: promises, perspectives and pitfalls.
J Exp Biol. 2023 Apr 25;226(Suppl_1). doi: 10.1242/jeb.245138. Epub 2023 Feb 8.

本文引用的文献

3
Suction power output and the inertial cost of rotating the neurocranium to generate suction in fish.
J Theor Biol. 2015 May 7;372:159-67. doi: 10.1016/j.jtbi.2015.03.001. Epub 2015 Mar 10.
4
Role of axial muscles in powering mouth expansion during suction feeding in largemouth bass (Micropterus salmoides).
J Exp Biol. 2014 Apr 15;217(Pt 8):1333-45. doi: 10.1242/jeb.095810. Epub 2013 Dec 20.
5
Bite force is limited by the force-length relationship of skeletal muscle in black carp, Mylopharyngodon piceus.
Biol Lett. 2013 Feb 13;9(2):20121181. doi: 10.1098/rsbl.2012.1181. Print 2013 Apr 23.
6
Resolution of ray-finned fish phylogeny and timing of diversification.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13698-703. doi: 10.1073/pnas.1206625109. Epub 2012 Aug 6.
9
Scientific rotoscoping: a morphology-based method of 3-D motion analysis and visualization.
J Exp Zool A Ecol Genet Physiol. 2010 Jun 1;313(5):244-61. doi: 10.1002/jez.588.
10
Energetic limitations on suction feeding performance in centrarchid fishes.
J Exp Biol. 2009 Oct;212(Pt 20):3241-51. doi: 10.1242/jeb.033092.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验