Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN 37212.
Microbiol Spectr. 2014 Dec;2(6). doi: 10.1128/microbiolspec.AID-0024-2014.
With the advent of high-throughput sequencing, and the increased availability of experimental structures of antibodies and antibody-antigen complexes, comes the improvement of computational approaches to predict the structure and design the function of antibodies and antibody-antigen complexes. While antibodies pose formidable challenges for protein structure prediction and design due to their large size and highly flexible loops in the complementarity-determining regions, they also offer exciting opportunities: the central importance of antibodies for human health results in a wealth of structural and sequence information that-as a knowledge base-can drive the modeling algorithms by limiting the conformational and sequence search space to likely regions of success. Further, efficient experimental platforms exist to test predicted antibody structure or designed antibody function, thereby leading to an iterative feedback loop between computation and experiment. We briefly review the history of computer-aided prediction of structure and design of function in the antibody field before we focus on recent methodological developments and the most exciting application examples.
随着高通量测序的出现,以及越来越多的抗体和抗体-抗原复合物的实验结构可用,计算方法得以改进,从而能够预测抗体和抗体-抗原复合物的结构和设计其功能。尽管由于抗体的互补决定区中的大环和高度灵活的环,使得抗体对蛋白质结构预测和设计构成了巨大挑战,但它们也提供了令人兴奋的机会:抗体对人类健康的重要性导致了丰富的结构和序列信息——作为知识库——可以通过将构象和序列搜索空间限制在可能成功的区域,来驱动建模算法。此外,还存在有效的实验平台来测试预测的抗体结构或设计的抗体功能,从而在计算和实验之间形成迭代反馈循环。在我们专注于最近的方法发展和最令人兴奋的应用示例之前,我们将简要回顾抗体领域中计算机辅助预测结构和设计功能的历史。