Suppr超能文献

关键用户定义临床决策支持功能的跨供应商评估:基于场景的认证电子健康记录评估及未来发展指南

Cross-vendor evaluation of key user-defined clinical decision support capabilities: a scenario-based assessment of certified electronic health records with guidelines for future development.

作者信息

McCoy Allison B, Wright Adam, Sittig Dean F

机构信息

Department of Biostatistics and Bioinformatics, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA

Division of General Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA Partners HealthCare, Boston, MA, USA Harvard Medical School, Boston, MA, USA.

出版信息

J Am Med Inform Assoc. 2015 Sep;22(5):1081-8. doi: 10.1093/jamia/ocv073. Epub 2015 Jun 23.

Abstract

OBJECTIVE

Clinical decision support (CDS) is essential for delivery of high-quality, cost-effective, and safe healthcare. The authors sought to evaluate the CDS capabilities across electronic health record (EHR) systems.

METHODS

We evaluated the CDS implementation capabilities of 8 Office of the National Coordinator for Health Information Technology Authorized Certification Body (ONC-ACB)-certified EHRs. Within each EHR, the authors attempted to implement 3 user-defined rules that utilized the various data and logic elements expected of typical EHRs and that represented clinically important evidenced-based care. The rules were: 1) if a patient has amiodarone on his or her active medication list and does not have a thyroid-stimulating hormone (TSH) result recorded in the last 12 months, suggest ordering a TSH; 2) if a patient has a hemoglobin A1c result >7% and does not have diabetes on his or her problem list, suggest adding diabetes to the problem list; and 3) if a patient has coronary artery disease on his or her problem list and does not have aspirin on the active medication list, suggest ordering aspirin.

RESULTS

Most evaluated EHRs lacked some CDS capabilities; 5 EHRs were able to implement all 3 rules, and the remaining 3 EHRs were unable to implement any of the rules. One of these did not allow users to customize CDS rules at all. The most frequently found shortcomings included the inability to use laboratory test results in rules, limit rules by time, use advanced Boolean logic, perform actions from the alert interface, and adequately test rules.

CONCLUSION

Significant improvements in the EHR certification and implementation procedures are necessary.

摘要

目的

临床决策支持(CDS)对于提供高质量、具有成本效益且安全的医疗保健至关重要。作者旨在评估电子健康记录(EHR)系统的CDS功能。

方法

我们评估了8个经美国国家卫生信息技术协调员办公室授权认证机构(ONC-ACB)认证的EHR的CDS实施能力。在每个EHR中,作者试图实施3条用户定义的规则,这些规则利用了典型EHR预期的各种数据和逻辑元素,并代表了临床上重要的循证护理。这些规则是:1)如果患者的活性药物清单上有胺碘酮,且在过去12个月内没有记录促甲状腺激素(TSH)结果,则建议开具TSH检测;2)如果患者糖化血红蛋白A1c结果>7%,且其问题清单上没有糖尿病,则建议在问题清单中添加糖尿病;3)如果患者的问题清单上有冠状动脉疾病,且活性药物清单上没有阿司匹林,则建议开具阿司匹林。

结果

大多数评估的EHR缺乏一些CDS功能;5个EHR能够实施所有3条规则,其余3个EHR无法实施任何规则。其中一个根本不允许用户自定义CDS规则。最常见的缺点包括无法在规则中使用实验室检测结果、按时间限制规则、使用高级布尔逻辑、从警报界面执行操作以及充分测试规则。

结论

EHR认证和实施程序需要显著改进。

相似文献

2
A framework for evaluating electronic health record vendor user-centered design and usability testing processes.
J Am Med Inform Assoc. 2017 Apr 1;24(e1):e35-e39. doi: 10.1093/jamia/ocw092.
5
Electronic health records and clinical decision support systems: impact on national ambulatory care quality.
Arch Intern Med. 2011 May 23;171(10):897-903. doi: 10.1001/archinternmed.2010.527. Epub 2011 Jan 24.
6
A multi-site randomized trial of a clinical decision support intervention to improve problem list completeness.
J Am Med Inform Assoc. 2023 Apr 19;30(5):899-906. doi: 10.1093/jamia/ocad020.
7
Evaluation of medication alerts in electronic health records for compliance with human factors principles.
J Am Med Inform Assoc. 2014 Oct;21(e2):e332-40. doi: 10.1136/amiajnl-2013-002279. Epub 2014 Apr 29.
8
Barriers to comparing the usability of electronic health records.
J Am Med Inform Assoc. 2017 Apr 1;24(e1):e191-e193. doi: 10.1093/jamia/ocw117.
10
Future of electronic health records: implications for decision support.
Mt Sinai J Med. 2012 Nov-Dec;79(6):757-68. doi: 10.1002/msj.21351.

引用本文的文献

1
Generative AI in hepatology: Transforming multimodal patient-generated data into actionable insights.
Hepatol Commun. 2025 Jul 14;9(8). doi: 10.1097/HC9.0000000000000683. eCollection 2025 Aug 1.
3
Bridging the Gap in Genomic Implementation: Identifying User Needs for Precision Nephrology.
Kidney Int Rep. 2024 Jun 3;9(8):2420-2431. doi: 10.1016/j.ekir.2024.05.032. eCollection 2024 Aug.
4
The Impact of Clinical Decision Support on Health Disparities and the Digital Divide.
Yearb Med Inform. 2023 Aug;32(1):169-178. doi: 10.1055/s-0043-1768722. Epub 2023 Jul 6.
5
Algorithmic Detection of Boolean Logic Errors in Clinical Decision Support Statements.
Appl Clin Inform. 2021 Jan;12(1):182-189. doi: 10.1055/s-0041-1722918. Epub 2021 Mar 10.
7
Advances in Clinical Decision Support: Highlights of Practice and the Literature 2015-2016.
Yearb Med Inform. 2017 Aug;26(1):125-132. doi: 10.15265/IY-2017-012. Epub 2017 Sep 11.
9
Analysis of clinical decision support system malfunctions: a case series and survey.
J Am Med Inform Assoc. 2016 Nov;23(6):1068-1076. doi: 10.1093/jamia/ocw005. Epub 2016 Mar 28.

本文引用的文献

1
The Number Needed to Remind: a Measure for Assessing CDS Effectiveness.
AMIA Annu Symp Proc. 2014 Nov 14;2014:506-15. eCollection 2014.
5
ONC issues guides for SAFER EHRs.
J AHIMA. 2014 Apr;85(4):50-2.
6
A qualitative study of the activities performed by people involved in clinical decision support: recommended practices for success.
J Am Med Inform Assoc. 2014 May-Jun;21(3):464-72. doi: 10.1136/amiajnl-2013-001771. Epub 2013 Sep 2.
10
Effect of clinical decision-support systems: a systematic review.
Ann Intern Med. 2012 Jul 3;157(1):29-43. doi: 10.7326/0003-4819-157-1-201207030-00450.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验