Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.
Acc Chem Res. 2015 Jul 21;48(7):2159-66. doi: 10.1021/acs.accounts.5b00136. Epub 2015 Jun 24.
Many chemical reactions-etching, growth, and catalytic-produce highly faceted surfaces. Examples range from the atomically flat silicon surfaces produced by anisotropic etchants to the wide variety of faceted nanoparticles, including cubes, wires, plates, tetrapods, and more. This faceting is a macroscopic manifestation of highly site-specific surface reactions. In this Account, we show that these site-specific reactions literally write a record of their chemical reactivity in the morphology of the surface-a record that can be quantified with scanning tunneling microscopy. Paradoxically, the sites targeted by these highly site-specific reactions are extremely rare. This paradox can be understood from a simple kinetic argument. An etchant that produces atomically flat surfaces must rapidly etch every surface site except the terrace atoms on the perfectly flat surface. As a result, the etch morphology is dominated by the least reactive species (here, the terrace sites), not the most reactive species. In contrast, the most interesting chemical species-the site where the reaction occurs most rapidly and most selectively-is the hardest one to find. This highly reactive site, the key to the reaction, is the needle in the haystack, often occurring in densities far below 1% of a monolayer and thus invisible to surface spectroscopies. This kinetic argument is quite general and applies to a wide variety of reactions, not just etching reactions. Understanding these highly site-specific reactions requires a combination of experimental and computational techniques with both exquisite defect sensitivity and high chemical sensitivity. In this Account, we present examples of highly site-specific chemistry on the technologically important face of silicon, Si(100). In one example, we show that the high reactivity of one particular surface site, a silicon dihydride bound to a silicon monohydride, or an "α-dihydride", provides a fundamental explanation for anisotropic silicon etching, a technology widely used in micromachining to selectively produce flat Si{111} surfaces. Fast-etching surfaces, such as Si(100) and Si(110), have geometries that support autocatalytic etching of α-dihydrides. In contrast, α-dihydrides exist only at kink sites on Si(111) surfaces. As a result, the etch rate of surfaces vicinal to Si(111) scales with the step density, approaching zero on the atomically flat surface. In a second example, we explain the chemistry that underlies pyramidal texturing of silicon wafers, a technique that is sometimes used to decrease the reflectivity of silicon solar cells. We show that a subtle change in chemical reactivity transforms a near-perfect Si(100) etchant into one that spontaneously produces nanoscale pyramids. The pyramids are not static features; they are self-propagating structures that evolve in size and location as the etching proceeds. The key to this texturing is the production of a very rare defect at the apex of each pyramid, a site that also etches autocatalytically. These experiments show that simple chemical reactions can enable an exquisite degree of atomic-scale control if only we can learn to harness them.
许多化学反应——刻蚀、生长和催化——都会产生高度面心的表面。例子包括从各向异性蚀刻剂产生的原子级平坦的硅表面到各种面心的纳米粒子,包括立方体、线、板、四足动物等等。这种面心是高度局部表面反应的宏观表现。在本说明中,我们表明,这些局部反应实际上在表面的形态中记录了它们的化学反应性——可以通过扫描隧道显微镜来定量记录。矛盾的是,这些高度局部反应的靶点极其罕见。这种矛盾可以从一个简单的动力学论点来理解。产生原子级平坦表面的蚀刻剂必须快速刻蚀除完美平坦表面上的平台原子之外的所有表面位点。因此,刻蚀形态主要由反应性最低的物种(这里是平台位点)决定,而不是反应性最高的物种。相比之下,最有趣的化学物种——反应最快、选择性最高的反应发生的位置——是最难找到的。这个高度反应性的位点,也就是反应的关键,是大海捞针中的一根针,通常出现在密度远低于单层的 1%的地方,因此无法被表面光谱检测到。这个动力学论点是相当普遍的,适用于各种反应,而不仅仅是刻蚀反应。理解这些高度局部的反应需要实验和计算技术的结合,这些技术既具有出色的缺陷敏感性,又具有高化学敏感性。在本说明中,我们介绍了在硅的技术上重要的面上高度局部化学的例子,硅(100)。在一个例子中,我们表明,一个特别的表面位点的高反应性,即与一个硅单氢化物结合的硅二氢化物,或一个“α-二氢化物”,为各向异性硅刻蚀提供了一个基本的解释,各向异性硅刻蚀是一种广泛用于微加工的技术,用于选择性地产生平坦的 Si{111}表面。快速刻蚀的表面,如 Si(100)和 Si(110),具有支持α-二氢化物自催化刻蚀的几何形状。相比之下,α-二氢化物只存在于 Si(111)表面的扭结位点。因此,与 Si(111)面相邻的表面的刻蚀速率与台阶密度成正比,在原子级平坦的表面上趋近于零。在第二个例子中,我们解释了硅片金字塔纹理化背后的化学原理,这种技术有时用于降低硅太阳能电池的反射率。我们表明,化学活性的微妙变化将一种近乎完美的 Si(100)蚀刻剂转化为一种自发产生纳米级金字塔的蚀刻剂。这些金字塔不是静态特征;它们是自传播结构,随着蚀刻的进行,它们的大小和位置会不断演变。这种纹理化的关键是在每个金字塔的顶点产生一个非常罕见的缺陷,一个也能自动催化刻蚀的位点。这些实验表明,如果我们能够学会利用它们,简单的化学反应就能实现高度原子级别的精确控制。