Khorasani Abed, Daliri Mohammad Reza, Pooyan Mohammad
Biomed Tech (Berl). 2016 Feb;61(1):119-26. doi: 10.1515/bmt-2014-0089.
Amyotrophic lateral sclerosis (ALS) is a common disease among neurological disorders that can change the pattern of gait in human. One of the effective methods for recognition and analysis of gait patterns in ALS patients is utilizing stride interval time series. With proper preprocessing for removing unwanted artifacts from the raw stride interval times and then extracting meaningful features from these data, the factorial hidden Markov model (FHMM) was used to distinguish ALS patients from healthy subjects. The results of classification accuracy evaluated using the leave-one-out (LOO) cross-validation algorithm showed that the FHMM method provides better recognition of ALS and healthy subjects compared to standard HMM. Moreover, comparing our method with a state-of-the art method named least square support vector machine (LS-SVM) showed the efficiency of the FHMM in distinguishing ALS subjects from healthy ones.
肌萎缩侧索硬化症(ALS)是神经疾病中一种常见的疾病,它会改变人类的步态模式。识别和分析ALS患者步态模式的有效方法之一是利用步幅间隔时间序列。通过对原始步幅间隔时间进行适当的预处理以去除不需要的伪影,然后从这些数据中提取有意义的特征,使用因子隐马尔可夫模型(FHMM)来区分ALS患者和健康受试者。使用留一法(LOO)交叉验证算法评估的分类准确率结果表明,与标准隐马尔可夫模型相比,FHMM方法能更好地识别ALS患者和健康受试者。此外,将我们的方法与一种名为最小二乘支持向量机(LS-SVM)的先进方法进行比较,结果表明FHMM在区分ALS受试者和健康受试者方面具有有效性。