IEEE Trans Image Process. 2015 Nov;24(11):3652-65. doi: 10.1109/TIP.2015.2449078. Epub 2015 Jun 23.
This paper presents a texture flow estimation method that uses an appearance-space clustering and a correspondence search in the space of deformed exemplars. To estimate the underlying texture flow, such as scale, orientation, and texture label, most existing approaches require a certain amount of user interactions. Strict assumptions on a geometric model further limit the flow estimation to such a near-regular texture as a gradient-like pattern. We address these problems by extracting distinct texture exemplars in an unsupervised way and using an efficient search strategy on a deformation parameter space. This enables estimating a coherent flow in a fully automatic manner, even when an input image contains multiple textures of different categories. A set of texture exemplars that describes the input texture image is first extracted via a medoid-based clustering in appearance space. The texture exemplars are then matched with the input image to infer deformation parameters. In particular, we define a distance function for measuring a similarity between the texture exemplar and a deformed target patch centered at each pixel from the input image, and then propose to use a randomized search strategy to estimate these parameters efficiently. The deformation flow field is further refined by adaptively smoothing the flow field under guidance of a matching confidence score. We show that a local visual similarity, directly measured from appearance space, explains local behaviors of the flow very well, and the flow field can be estimated very efficiently when the matching criterion meets the randomized search strategy. Experimental results on synthetic and natural images show that the proposed method outperforms existing methods.
本文提出了一种纹理流估计方法,该方法使用外观空间聚类和变形示例空间中的对应搜索。为了估计潜在的纹理流,例如比例、方向和纹理标签,大多数现有方法都需要一定数量的用户交互。对几何模型的严格假设进一步将流估计限制为类似于梯度图案的规则纹理。我们通过以无监督的方式提取不同的纹理示例并在变形参数空间上使用有效的搜索策略来解决这些问题。这使得即使输入图像包含不同类别的多个纹理,也可以以全自动的方式估计一致的流。首先通过在外观空间中基于中值的聚类来提取描述输入纹理图像的纹理示例集。然后,通过将纹理示例与输入图像匹配来推断变形参数。具体来说,我们定义了一种距离函数,用于测量纹理示例与从输入图像的每个像素中心的变形目标补丁之间的相似性,然后提出使用随机搜索策略来有效地估计这些参数。通过在匹配置信度得分的指导下自适应地平滑流场,进一步细化变形流场。我们表明,从外观空间直接测量的局部视觉相似性很好地解释了流的局部行为,并且当匹配准则满足随机搜索策略时,流场可以非常有效地估计。在合成和自然图像上的实验结果表明,所提出的方法优于现有方法。