IEEE Trans Image Process. 2015 Nov;24(11):3834-45. doi: 10.1109/TIP.2015.2449552. Epub 2015 Jun 24.
Superpixels and supervoxels play an important role in many computer vision applications, such as image segmentation, object recognition, and video analysis. In this paper, we propose a new hierarchical edge-weighted centroidal Voronoi tessellation (HEWCVT) method for generating superpixels/supervoxels in multiple scales. In this method, we model the problem as a multilevel clustering process: superpixels/supervoxels in one level are clustered to obtain larger size superpixels/supervoxels in the next level. In the finest scale, the initial clustering is directly conducted on pixels/voxels. The clustering energy involves both color similarities and boundary smoothness of superpixels/supervoxels. The resulting superpixels/supervoxels can be easily represented by a hierarchical tree which describes the nesting relation of superpixels/supervoxels across different scales. We first investigate the performance of obtained superpixels/supervoxels under different parameter settings, then we evaluate and compare the proposed method with several state-of-the-art superpixel/supervoxel methods on standard image and video data sets. Both quantitative and qualitative results show that the proposed HEWCVT method achieves superior or comparable performances with other methods.
超像素和超体素在许多计算机视觉应用中扮演着重要的角色,例如图像分割、目标识别和视频分析。在本文中,我们提出了一种新的分层边缘加权质心 Voronoi 细分(HEWCVT)方法,用于在多个尺度上生成超像素/超体素。在该方法中,我们将问题建模为一个多层次聚类过程:在一个尺度上的超像素/超体素被聚类以在下一个尺度上获得更大尺寸的超像素/超体素。在最细的尺度上,直接在像素/体素上进行初始聚类。聚类能量同时包含超像素/超体素的颜色相似性和边界平滑性。生成的超像素/超体素可以通过一个层次树轻松表示,该树描述了不同尺度之间超像素/超体素的嵌套关系。我们首先研究了在不同参数设置下获得的超像素/超体素的性能,然后在标准图像和视频数据集上评估和比较了所提出的方法与几种最先进的超像素/超体素方法。定量和定性结果均表明,所提出的 HEWCVT 方法具有优于或可与其他方法相媲美的性能。