Suppr超能文献

在室温下用红外光调制纳米线中的自旋弛豫

Modulating spin relaxation in nanowires with infrared light at room temperature.

作者信息

Hossain Md Iftekhar, Bandyopadhyay Saumil, Atulasimha Jayasimha, Bandyopadhyay Supriyo

机构信息

Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.

出版信息

Nanotechnology. 2015 Jul 17;26(28):281001. doi: 10.1088/0957-4484/26/28/281001. Epub 2015 Jun 26.

Abstract

Spintronic devices usually rely on long spin relaxation times and/or long spin relaxation lengths for optimum performance. Therefore, the ability to modulate these quantities with an external agent offers unique possibilities. The dominant spin relaxation mechanism in most technologically important semiconductors is the D'yakonov-Perel' (DP) mechanism which may vanish if the spin carriers (electrons) are confined to a single conduction subband in a quantum wire. Here, we report modulating the DP spin relaxation rate (and hence the spin relaxation length) in self assembled 50 nm diameter InSb nanowires with infrared (IR) light at room temperature. In the dark, almost all the electrons in the nanowires are in the lowest conduction subband, resulting in near-complete absence of DP relaxation. This allows observation of spin-sensitive effects in the magnetoresistance. Under IR illumination, higher subbands get populated and the DP spin relaxation mechanism is revived, leading to a three-fold decrease in the spin relaxation length. Consequently, the spin sensitive effects disappear under illumination. This phenomenon may have applications in spintronic room-temperature IR photodetection.

摘要

自旋电子器件通常依赖长的自旋弛豫时间和/或长的自旋弛豫长度来实现最佳性能。因此,利用外部因素调节这些量的能力提供了独特的可能性。在大多数具有重要技术意义的半导体中,主导的自旋弛豫机制是D'yakonov-Perel'(DP)机制,如果自旋载流子(电子)被限制在量子线中的单个导带子带中,该机制可能会消失。在此,我们报道了在室温下用红外(IR)光调制自组装的直径为50nm的InSb纳米线中的DP自旋弛豫率(进而调制自旋弛豫长度)。在黑暗中,纳米线中的几乎所有电子都处于最低导带子带中,导致几乎完全不存在DP弛豫。这使得能够观察到磁阻中的自旋敏感效应。在红外光照下,更高的子带被填充,DP自旋弛豫机制恢复,导致自旋弛豫长度减小三倍。因此,光照下自旋敏感效应消失。这种现象可能在自旋电子室温红外光探测中具有应用价值。

相似文献

1
Modulating spin relaxation in nanowires with infrared light at room temperature.
Nanotechnology. 2015 Jul 17;26(28):281001. doi: 10.1088/0957-4484/26/28/281001. Epub 2015 Jun 26.
3
Observation of long spin-relaxation times in bilayer graphene at room temperature.
Phys Rev Lett. 2011 Jul 22;107(4):047206. doi: 10.1103/PhysRevLett.107.047206. Epub 2011 Jul 21.
4
Spin relaxation in InGaN quantum disks in GaN nanowires.
Nano Lett. 2011 Dec 14;11(12):5396-400. doi: 10.1021/nl203091f. Epub 2011 Nov 7.
5
Observation of the D'yakonov-Perel' Spin Relaxation in Single-Crystalline Pt Thin Films.
Phys Rev Lett. 2016 Jun 24;116(25):256802. doi: 10.1103/PhysRevLett.116.256802. Epub 2016 Jun 22.
6
Spin dynamics and spin noise in the presence of randomly varying spin-orbit interaction in a semiconductor quantum wire.
J Phys Condens Matter. 2012 May 30;24(21):215302. doi: 10.1088/0953-8984/24/21/215302. Epub 2012 Apr 27.
7
Generalized path integral method for Elliott-Yafet spin relaxations in quantum wells and narrow wires.
J Phys Condens Matter. 2012 Feb 22;24(7):075801. doi: 10.1088/0953-8984/24/7/075801. Epub 2012 Jan 18.
8
Magnon Spin Relaxation and Spin Hall Effect Due to the Dipolar Interaction in Antiferromagnetic Insulators.
Phys Rev Lett. 2020 Feb 21;124(7):077201. doi: 10.1103/PhysRevLett.124.077201.
9
Spin-phonon relaxation from a universal ab initio density-matrix approach.
Nat Commun. 2020 Jun 3;11(1):2780. doi: 10.1038/s41467-020-16063-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验