Hossain Md Iftekhar, Bandyopadhyay Saumil, Atulasimha Jayasimha, Bandyopadhyay Supriyo
Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA.
Nanotechnology. 2015 Jul 17;26(28):281001. doi: 10.1088/0957-4484/26/28/281001. Epub 2015 Jun 26.
Spintronic devices usually rely on long spin relaxation times and/or long spin relaxation lengths for optimum performance. Therefore, the ability to modulate these quantities with an external agent offers unique possibilities. The dominant spin relaxation mechanism in most technologically important semiconductors is the D'yakonov-Perel' (DP) mechanism which may vanish if the spin carriers (electrons) are confined to a single conduction subband in a quantum wire. Here, we report modulating the DP spin relaxation rate (and hence the spin relaxation length) in self assembled 50 nm diameter InSb nanowires with infrared (IR) light at room temperature. In the dark, almost all the electrons in the nanowires are in the lowest conduction subband, resulting in near-complete absence of DP relaxation. This allows observation of spin-sensitive effects in the magnetoresistance. Under IR illumination, higher subbands get populated and the DP spin relaxation mechanism is revived, leading to a three-fold decrease in the spin relaxation length. Consequently, the spin sensitive effects disappear under illumination. This phenomenon may have applications in spintronic room-temperature IR photodetection.
自旋电子器件通常依赖长的自旋弛豫时间和/或长的自旋弛豫长度来实现最佳性能。因此,利用外部因素调节这些量的能力提供了独特的可能性。在大多数具有重要技术意义的半导体中,主导的自旋弛豫机制是D'yakonov-Perel'(DP)机制,如果自旋载流子(电子)被限制在量子线中的单个导带子带中,该机制可能会消失。在此,我们报道了在室温下用红外(IR)光调制自组装的直径为50nm的InSb纳米线中的DP自旋弛豫率(进而调制自旋弛豫长度)。在黑暗中,纳米线中的几乎所有电子都处于最低导带子带中,导致几乎完全不存在DP弛豫。这使得能够观察到磁阻中的自旋敏感效应。在红外光照下,更高的子带被填充,DP自旋弛豫机制恢复,导致自旋弛豫长度减小三倍。因此,光照下自旋敏感效应消失。这种现象可能在自旋电子室温红外光探测中具有应用价值。