Suppr超能文献

一种用于设计水质监测网络的决策方法的开发。

Development of a decision-making methodology to design a water quality monitoring network.

作者信息

Keum Jongho, Kaluarachchi Jagath J

机构信息

Department of Civil Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada,

出版信息

Environ Monit Assess. 2015 Jul;187(7):466. doi: 10.1007/s10661-015-4687-z. Epub 2015 Jun 26.

Abstract

The number of water quality monitoring stations in the USA has decreased over the past few decades. Scarcity of observations can easily produce prediction uncertainty due to unreliable model calibration. An effective water quality monitoring network is important not only for model calibration and water quality prediction but also for resources management. Redundant or improperly located monitoring stations may cause increased monitoring costs without improvement to the understanding of water quality in watersheds. In this work, a decision-making methodology is proposed to design a water quality monitoring network by providing an adequate number of monitoring stations and their approximate locations at the eight-digit hydrologic unit codes (HUC8) scale. The proposed methodology is demonstrated for an example at the Upper Colorado River Basin (UCRB), where salinity is a serious concern. The level of monitoring redundancy or scarcity is defined by an index, station ratio (SR), which represents a monitoring density based on water quality load originated within a subbasin. By comparing the number of stations from a selected target SR with the available number of stations including the actual and the potential stations, the suggested number of stations in each subbasin was decided. If monitoring stations are primarily located in the low salinity loading subbasins, the average actual SR tends to increase, and vice versa. Results indicate that the spatial distribution of monitoring locations in 2011 is concentrated on low salinity loading subbasins, and therefore, additional monitoring is required for the high salinity loading subbasins. The proposed methodology shows that the SR is a simple and a practical indicator for monitoring density.

摘要

在过去几十年里,美国水质监测站的数量有所减少。由于模型校准不可靠,观测数据的稀缺很容易产生预测不确定性。一个有效的水质监测网络不仅对模型校准和水质预测很重要,而且对资源管理也很重要。冗余或位置不当的监测站可能会增加监测成本,而对流域水质的了解却没有改善。在这项工作中,提出了一种决策方法,以设计一个水质监测网络,该方法通过在八位数水文单元代码(HUC8)尺度上提供足够数量的监测站及其大致位置来实现。以上方法在上科罗拉多河流域(UCRB)的一个例子中得到了验证,在该流域,盐度是一个严重问题。监测冗余或稀缺程度由一个指标——站点比率(SR)来定义,该指标表示基于子流域内产生的水质负荷的监测密度。通过将选定目标SR的站点数量与包括实际站点和潜在站点在内的可用站点数量进行比较,确定了每个子流域建议的站点数量。如果监测站主要位于低盐度负荷子流域,平均实际SR往往会增加,反之亦然。结果表明,2011年监测地点的空间分布集中在低盐度负荷子流域,因此,高盐度负荷子流域需要额外的监测。所提出的方法表明,SR是监测密度的一个简单而实用的指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验