Suppr超能文献

用于体内成像的光热光锁相光学相干断层扫描技术

Photothermal optical lock-in optical coherence tomography for in vivo imaging.

作者信息

Tucker-Schwartz Jason M, Lapierre-Landry Maryse, Patil Chetan A, Skala Melissa C

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.

Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA ; Current address: Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA.

出版信息

Biomed Opt Express. 2015 May 27;6(6):2268-82. doi: 10.1364/BOE.6.002268. eCollection 2015 Jun 1.

Abstract

Photothermal OCT (PTOCT) provides high sensitivity to molecular targets in tissue, and occupies a spatial imaging regime that is attractive for small animal imaging. However, current implementations of PTOCT require extensive temporal sampling, resulting in slow frame rates and a large data burden that limit its in vivo utility. To address these limitations, we have implemented optical lock-in techniques for photothermal optical lock-in OCT (poli-OCT), and demonstrated the in vivo imaging capabilities of this approach. The poli-OCT signal was assessed in tissue-mimicking phantoms containing indocyanine green (ICG), an FDA approved small molecule that has not been previously imaged in vivo with PTOCT. Then, the effects of in vivo blood flow and motion artifact were assessed and attenuated, and in vivo poli-OCT was demonstrated with both ICG and gold nanorods as contrast agents. Experiments revealed that poli-OCT signals agreed with optical lock-in theory and the bio-heat equation, and the system exhibited shot noise limited performance. In phantoms containing biologically relevant concentrations of ICG (1 µg/ml), the poli-OCT signal was significantly greater than control phantoms (p<0.05), demonstrating sensitivity to small molecules. Finally, in vivo poli-OCT of ICG identified the lymphatic vessels in a mouse ear, and also identified low concentrations (200 pM) of gold nanorods in subcutaneous injections at frame rates ten times faster than previously reported. This work illustrates that future in vivo molecular imaging studies could benefit from the improved acquisition and analysis times enabled by poli-OCT.

摘要

光热光学相干断层扫描(PTOCT)对组织中的分子靶点具有高灵敏度,并占据了对小动物成像具有吸引力的空间成像领域。然而,目前PTOCT的实现需要大量的时间采样,导致帧率低和数据负担大,限制了其在体内的应用。为了解决这些限制,我们实现了用于光热光学锁相OCT(poli-OCT)的光学锁相技术,并展示了这种方法的体内成像能力。在含有吲哚菁绿(ICG)的组织模拟体模中评估了poli-OCT信号,ICG是一种FDA批准的小分子,此前尚未用PTOCT进行体内成像。然后,评估并减弱了体内血流和运动伪影的影响,并用ICG和金纳米棒作为对比剂展示了体内poli-OCT。实验表明,poli-OCT信号与光学锁相理论和生物热方程一致,并且该系统表现出散粒噪声限制性能。在含有生物学相关浓度ICG(1μg/ml)的体模中,poli-OCT信号显著大于对照体模(p<0.05),证明了对小分子的灵敏度。最后,ICG的体内poli-OCT识别出小鼠耳部的淋巴管,还以比先前报道快十倍的帧率识别出皮下注射中低浓度(200 pM)的金纳米棒。这项工作表明,未来的体内分子成像研究可能会受益于poli-OCT带来的采集和分析时间的改善。

相似文献

1
Photothermal optical lock-in optical coherence tomography for in vivo imaging.
Biomed Opt Express. 2015 May 27;6(6):2268-82. doi: 10.1364/BOE.6.002268. eCollection 2015 Jun 1.
2
In vivo photothermal optical coherence tomography of gold nanorod contrast agents.
Biomed Opt Express. 2012 Nov 1;3(11):2881-95. doi: 10.1364/BOE.3.002881. Epub 2012 Oct 17.
3
In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography.
Biomed Opt Express. 2014 May 1;5(6):1731-43. doi: 10.1364/BOE.5.001731. eCollection 2014 Jun 1.
4
Photothermal Optical Coherence Tomography of Anti-Angiogenic Treatment in the Mouse Retina Using Gold Nanorods as Contrast Agents.
Transl Vis Sci Technol. 2019 May 14;8(3):18. doi: 10.1167/tvst.8.3.18. eCollection 2019 May.
6
Ex-vivo molecular imaging with upconversion nanoparticles (UCNPs) using photo thermal optical coherence tomography (PTOCT).
Photodiagnosis Photodyn Ther. 2021 Mar;33:102027. doi: 10.1016/j.pdpdt.2020.102027. Epub 2020 Sep 24.
7
Cross-correlation photothermal optical coherence tomography with high effective resolution.
Opt Lett. 2017 Dec 1;42(23):4974-4977. doi: 10.1364/OL.42.004974.
8
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.
10
Improved optical coherence tomography imaging of animal peripheral nerves using a prism nerve holder.
J Biomed Opt. 2023 Feb;28(2):026002. doi: 10.1117/1.JBO.28.2.026002. Epub 2023 Feb 11.

引用本文的文献

3
Photothermal optical coherence tomography for 3D live cell detection and mapping.
Opt Contin. 2023 Dec 15;2(12):2468-2483. doi: 10.1364/optcon.503577. Epub 2023 Nov 27.
5
Three-dimensional opto-thermo-mechanical model for predicting photo-thermal optical coherence tomography responses in multilayer geometries.
Biomed Opt Express. 2022 May 16;13(6):3416-3433. doi: 10.1364/BOE.454491. eCollection 2022 Jun 1.
6
Transient-mode photothermal optical coherence tomography.
Opt Lett. 2021 Nov 15;46(22):5703-5706. doi: 10.1364/OL.443987.
9
Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography.
Transl Vis Sci Technol. 2018 Sep 4;7(5):4. doi: 10.1167/tvst.7.5.4. eCollection 2018.
10
Photothermal optical coherence tomography of indocyanine green in ex vivo eyes.
Opt Lett. 2018 Jun 1;43(11):2470-2473. doi: 10.1364/OL.43.002470.

本文引用的文献

1
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3128-33. doi: 10.1073/pnas.1500038112. Epub 2015 Mar 3.
2
ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease.
Biomaterials. 2015 Feb;41:166-75. doi: 10.1016/j.biomaterials.2014.11.016. Epub 2014 Dec 9.
3
Detection of plasmonic nanoparticles with full field-OCT: optical and photothermal detection.
Biomed Opt Express. 2014 Sep 11;5(10):3541-6. doi: 10.1364/BOE.5.003541. eCollection 2014 Oct 1.
4
Fast wide-field photothermal and quantitative phase cell imaging with optical lock-in detection.
Biomed Opt Express. 2014 Jul 8;5(8):2517-25. doi: 10.1364/BOE.5.002517. eCollection 2014 Aug 1.
5
Imaging preclinical tumour models: improving translational power.
Nat Rev Cancer. 2014 Jul;14(7):481-93. doi: 10.1038/nrc3751. Epub 2014 Jun 19.
6
In vivo imaging of nanoparticle delivery and tumor microvasculature with multimodal optical coherence tomography.
Biomed Opt Express. 2014 May 1;5(6):1731-43. doi: 10.1364/BOE.5.001731. eCollection 2014 Jun 1.
7
Imaging hallmarks of cancer in living mice.
Nat Rev Cancer. 2014 Jun;14(6):406-18. doi: 10.1038/nrc3742.
8
Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo.
Adv Mater. 2014 Jan;26(4):607-14, 506. doi: 10.1002/adma.201303520. Epub 2013 Dec 16.
9
Multi-MHz retinal OCT.
Biomed Opt Express. 2013 Aug 30;4(10):1890-908. doi: 10.1364/BOE.4.001890. eCollection 2013.
10
Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer.
Cancer Res. 2013 Oct 15;73(20):6164-74. doi: 10.1158/0008-5472.CAN-13-0527.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验