Suppr超能文献

使用多元线性回归和支持向量回归预测脊髓型颈椎病手术后的功能结局。

Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy.

作者信息

Hoffman Haydn, Lee Sunghoon I, Garst Jordan H, Lu Derek S, Li Charles H, Nagasawa Daniel T, Ghalehsari Nima, Jahanforouz Nima, Razaghy Mehrdad, Espinal Marie, Ghavamrezaii Amir, Paak Brian H, Wu Irene, Sarrafzadeh Majid, Lu Daniel C

机构信息

Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 536, Los Angeles, CA 90095-6901, USA.

Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA; Wireless Health Institute, University of California Los Angeles, Los Angeles, CA, USA.

出版信息

J Clin Neurosci. 2015 Sep;22(9):1444-9. doi: 10.1016/j.jocn.2015.04.002. Epub 2015 Jun 23.

Abstract

This study introduces the use of multivariate linear regression (MLR) and support vector regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required decompressive surgery with or without fusion. Fine motor function was tested preoperatively and postoperatively with a handgrip-based tracking device that has been previously validated, yielding mean absolute accuracy (MAA) results for two tracking tasks (sinusoidal and step). All patients completed Oswestry disability index (ODI) and modified Japanese Orthopaedic Association questionnaires preoperatively and postoperatively. Preoperative data was utilized in MLR and SVR models to predict postoperative ODI. Predictions were compared to the actual ODI scores with the coefficient of determination (R(2)) and mean absolute difference (MAD). From this, 20 patients met the inclusion criteria and completed follow-up at least 3 months after surgery. With the MLR model, a combination of the preoperative ODI score, preoperative MAA (step function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.452; MAD=0.0887; p=1.17 × 10(-3)). With the SVR model, a combination of preoperative ODI score, preoperative MAA (sinusoidal function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.932; MAD=0.0283; p=5.73 × 10(-12)). The SVR model was more accurate than the MLR model. The SVR can be used preoperatively in risk/benefit analysis and the decision to operate.

摘要

本研究介绍了使用多元线性回归(MLR)和支持向量回归(SVR)模型来预测一组接受颈椎病性脊髓病(CSM)手术患者的术后结果。目前,预测CSM手术后的结果仍然是一项挑战。我们招募了诊断为CSM且需要进行减压手术(有或无融合)的患者。术前和术后使用一种先前已验证的基于握力的跟踪设备测试精细运动功能,得出两个跟踪任务(正弦和阶梯)的平均绝对精度(MAA)结果。所有患者术前和术后均完成了Oswestry功能障碍指数(ODI)和改良日本骨科协会问卷。术前数据用于MLR和SVR模型以预测术后ODI。将预测结果与实际ODI评分进行比较,采用决定系数(R²)和平均绝对差(MAD)。由此,20名患者符合纳入标准并在术后至少3个月完成随访。对于MLR模型,术前ODI评分、术前MAA(阶梯函数)和症状持续时间的组合对术后ODI的预测效果最佳(R² = 0.452;MAD = 0.0887;p = 1.17×10⁻³)。对于SVR模型,术前ODI评分、术前MAA(正弦函数)和症状持续时间的组合对术后ODI的预测效果最佳(R² = 0.932;MAD = 0.0283;p = 5.73×10⁻¹²)。SVR模型比MLR模型更准确。SVR可在术前用于风险/效益分析和手术决策。

相似文献

2
Correlation of quality of life and functional outcome measures for cervical spondylotic myelopathy.
J Neurosurg Spine. 2016 Mar;24(3):483-9. doi: 10.3171/2015.6.SPINE159. Epub 2015 Nov 27.
3
Arthroplasty for cervical spondylotic myelopathy: similar results to patients with only radiculopathy at 3 years' follow-up.
J Neurosurg Spine. 2014 Sep;21(3):400-10. doi: 10.3171/2014.3.SPINE13387. Epub 2014 Jun 13.
5
Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy.
J Neurosurg Spine. 2017 Jun;26(6):668-678. doi: 10.3171/2016.10.SPINE16479. Epub 2017 Mar 17.
6
Metabolite and functional profile of patients with cervical spondylotic myelopathy.
J Neurosurg Spine. 2017 May;26(5):547-553. doi: 10.3171/2016.9.SPINE151507. Epub 2017 Feb 3.
9
Myelopathic signs and functional outcome following cervical decompression surgery: a proposed myelopathy scale.
J Neurosurg Spine. 2016 Jun;24(6):871-7. doi: 10.3171/2015.9.SPINE139. Epub 2016 Feb 5.

引用本文的文献

1
Scoping Review of Machine Learning and Patient-Reported Outcomes in Spine Surgery.
Bioengineering (Basel). 2025 Jan 29;12(2):125. doi: 10.3390/bioengineering12020125.
4
Machine Learning in Neurosurgery: Toward Complex Inputs, Actionable Predictions, and Generalizable Translations.
Cureus. 2024 Jan 9;16(1):e51963. doi: 10.7759/cureus.51963. eCollection 2024 Jan.
5
Machine Learning Applications in Spine Surgery.
Cureus. 2023 Oct 31;15(10):e48078. doi: 10.7759/cureus.48078. eCollection 2023 Oct.
6
The use of machine learning for predicting candidates for outpatient spine surgery: a review.
J Spine Surg. 2023 Sep 22;9(3):323-330. doi: 10.21037/jss-22-121. Epub 2023 Jul 6.
7
Artificial Intelligence in Neurosurgery: A State-of-the-Art Review from Past to Future.
Diagnostics (Basel). 2023 Jul 20;13(14):2429. doi: 10.3390/diagnostics13142429.
8
Development and validation of a point-of-care clinical risk score to predict surgical site infection following open spinal fusion.
N Am Spine Soc J. 2022 Dec 23;13:100196. doi: 10.1016/j.xnsj.2022.100196. eCollection 2023 Mar.
9
Diffusion basis spectrum imaging predicts long-term clinical outcomes following surgery in cervical spondylotic myelopathy.
Spine J. 2023 Apr;23(4):504-512. doi: 10.1016/j.spinee.2022.12.003. Epub 2022 Dec 10.

本文引用的文献

2
Clinical results of cervical laminectomy and fusion for the treatment of cervical spondylotic myelopathy in 58 consecutive patients.
Surg Neurol Int. 2014 Apr 16;5(Suppl 3):S133-7. doi: 10.4103/2152-7806.130670. eCollection 2014.
3
Hand function and quality of life in children with epidermolysis bullosa.
Pediatr Dermatol. 2014 Mar-Apr;31(2):176-82. doi: 10.1111/pde.12262. Epub 2013 Nov 26.
4
A pervasive assessment of motor function: a lightweight grip strength tracking system.
IEEE J Biomed Health Inform. 2013 Nov;17(6):1023-30. doi: 10.1109/JBHI.2013.2262833.
8
Cervical spondylotic myelopathy.
Neurol Clin. 2013 Feb;31(1):287-305. doi: 10.1016/j.ncl.2012.09.003.
10
Cervical spondylotic myelopathy: pathophysiology, clinical presentation, and treatment.
HSS J. 2011 Jul;7(2):170-8. doi: 10.1007/s11420-011-9208-1. Epub 2011 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验