Hoffman Haydn, Lee Sunghoon I, Garst Jordan H, Lu Derek S, Li Charles H, Nagasawa Daniel T, Ghalehsari Nima, Jahanforouz Nima, Razaghy Mehrdad, Espinal Marie, Ghavamrezaii Amir, Paak Brian H, Wu Irene, Sarrafzadeh Majid, Lu Daniel C
Department of Neurosurgery, University of California Los Angeles, 300 Stein Plaza, Suite 536, Los Angeles, CA 90095-6901, USA.
Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA; Wireless Health Institute, University of California Los Angeles, Los Angeles, CA, USA.
J Clin Neurosci. 2015 Sep;22(9):1444-9. doi: 10.1016/j.jocn.2015.04.002. Epub 2015 Jun 23.
This study introduces the use of multivariate linear regression (MLR) and support vector regression (SVR) models to predict postoperative outcomes in a cohort of patients who underwent surgery for cervical spondylotic myelopathy (CSM). Currently, predicting outcomes after surgery for CSM remains a challenge. We recruited patients who had a diagnosis of CSM and required decompressive surgery with or without fusion. Fine motor function was tested preoperatively and postoperatively with a handgrip-based tracking device that has been previously validated, yielding mean absolute accuracy (MAA) results for two tracking tasks (sinusoidal and step). All patients completed Oswestry disability index (ODI) and modified Japanese Orthopaedic Association questionnaires preoperatively and postoperatively. Preoperative data was utilized in MLR and SVR models to predict postoperative ODI. Predictions were compared to the actual ODI scores with the coefficient of determination (R(2)) and mean absolute difference (MAD). From this, 20 patients met the inclusion criteria and completed follow-up at least 3 months after surgery. With the MLR model, a combination of the preoperative ODI score, preoperative MAA (step function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.452; MAD=0.0887; p=1.17 × 10(-3)). With the SVR model, a combination of preoperative ODI score, preoperative MAA (sinusoidal function), and symptom duration yielded the best prediction of postoperative ODI (R(2)=0.932; MAD=0.0283; p=5.73 × 10(-12)). The SVR model was more accurate than the MLR model. The SVR can be used preoperatively in risk/benefit analysis and the decision to operate.
本研究介绍了使用多元线性回归(MLR)和支持向量回归(SVR)模型来预测一组接受颈椎病性脊髓病(CSM)手术患者的术后结果。目前,预测CSM手术后的结果仍然是一项挑战。我们招募了诊断为CSM且需要进行减压手术(有或无融合)的患者。术前和术后使用一种先前已验证的基于握力的跟踪设备测试精细运动功能,得出两个跟踪任务(正弦和阶梯)的平均绝对精度(MAA)结果。所有患者术前和术后均完成了Oswestry功能障碍指数(ODI)和改良日本骨科协会问卷。术前数据用于MLR和SVR模型以预测术后ODI。将预测结果与实际ODI评分进行比较,采用决定系数(R²)和平均绝对差(MAD)。由此,20名患者符合纳入标准并在术后至少3个月完成随访。对于MLR模型,术前ODI评分、术前MAA(阶梯函数)和症状持续时间的组合对术后ODI的预测效果最佳(R² = 0.452;MAD = 0.0887;p = 1.17×10⁻³)。对于SVR模型,术前ODI评分、术前MAA(正弦函数)和症状持续时间的组合对术后ODI的预测效果最佳(R² = 0.932;MAD = 0.0283;p = 5.73×10⁻¹²)。SVR模型比MLR模型更准确。SVR可在术前用于风险/效益分析和手术决策。