Suppr超能文献

重新审视抗原性可变传染病的多菌株、多位点等位基因系统的数学分析。

Mathematical analysis of a multiple strain, multi-locus-allele system for antigenically variable infectious diseases revisited.

作者信息

Cherif Alhaji

机构信息

Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom.

出版信息

Math Biosci. 2015 Sep;267:24-40. doi: 10.1016/j.mbs.2015.06.007. Epub 2015 Jun 23.

Abstract

Many important pathogens such as HIV/AIDS, influenza, malaria, dengue and meningitis generally exist in phenotypically distinct serotypes that compete for hosts. Models used to study these diseases appear as meta-population systems. Herein, we revisit one of the multiple strain models that have been used to investigate the dynamics of infectious diseases with co-circulating serotypes or strains, and provide analytical results underlying the numerical investigations. In particular, we establish the necessary conditions for the local asymptotic stability of the steady states and for the existence of oscillatory behaviors via Hopf bifurcation. In addition, we show that the existence of discrete antigenic forms among pathogens can either fully or partially self-organize, where (i) strains exhibit no strain structures and coexist or (ii) antigenic variants sort into non-overlapping or minimally overlapping clusters that either undergo the principle of competitive exclusion exhibiting discrete strain structures, or co-exist cyclically.

摘要

许多重要的病原体,如艾滋病毒/艾滋病、流感、疟疾、登革热和脑膜炎,通常以表型不同的血清型存在,它们会争夺宿主。用于研究这些疾病的模型表现为元种群系统。在此,我们重新审视了多个菌株模型中的一个,该模型已被用于研究具有共同传播血清型或菌株的传染病动态,并提供了数值研究背后的分析结果。特别是,我们通过霍普夫分岔建立了稳态局部渐近稳定性和振荡行为存在的必要条件。此外,我们表明病原体中离散抗原形式的存在可以完全或部分地自我组织,其中:(i)菌株不表现出菌株结构并共存;或(ii)抗原变体分类为不重叠或最小重叠的簇,这些簇要么遵循竞争排斥原则表现出离散的菌株结构,要么周期性共存。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验