Takwoingi Yemisi, Guo Boliang, Riley Richard D, Deeks Jonathan J
1 Public Health, Epidemiology and Biostatistics, University of Birmingham, Edgbaston, Birmingham, UK.
2 School of Medicine, University of Nottingham, Nottingham, UK.
Stat Methods Med Res. 2017 Aug;26(4):1896-1911. doi: 10.1177/0962280215592269. Epub 2015 Jun 26.
Hierarchical models such as the bivariate and hierarchical summary receiver operating characteristic (HSROC) models are recommended for meta-analysis of test accuracy studies. These models are challenging to fit when there are few studies and/or sparse data (for example zero cells in contingency tables due to studies reporting 100% sensitivity or specificity); the models may not converge, or give unreliable parameter estimates. Using simulation, we investigated the performance of seven hierarchical models incorporating increasing simplifications in scenarios designed to replicate realistic situations for meta-analysis of test accuracy studies. Performance of the models was assessed in terms of estimability (percentage of meta-analyses that successfully converged and percentage where the between study correlation was estimable), bias, mean square error and coverage of the 95% confidence intervals. Our results indicate that simpler hierarchical models are valid in situations with few studies or sparse data. For synthesis of sensitivity and specificity, univariate random effects logistic regression models are appropriate when a bivariate model cannot be fitted. Alternatively, an HSROC model that assumes a symmetric SROC curve (by excluding the shape parameter) can be used if the HSROC model is the chosen meta-analytic approach. In the absence of heterogeneity, fixed effect equivalent of the models can be applied.
诸如双变量模型和分层汇总受试者工作特征(HSROC)模型等分层模型,推荐用于检验准确性研究的荟萃分析。当研究数量较少和/或数据稀疏时(例如列联表中出现零单元格,原因是研究报告的灵敏度或特异度为100%),这些模型拟合起来具有挑战性;模型可能无法收敛,或者给出不可靠的参数估计。通过模拟,我们在旨在复制检验准确性研究荟萃分析现实情况的场景中,研究了七种逐步简化的分层模型的性能。根据可估计性(成功收敛的荟萃分析的百分比以及可估计研究间相关性的百分比)、偏差、均方误差和95%置信区间的覆盖范围,对模型的性能进行了评估。我们的结果表明,在研究数量较少或数据稀疏的情况下,更简单的分层模型是有效的。对于灵敏度和特异度的综合分析,当无法拟合双变量模型时,单变量随机效应逻辑回归模型是合适的。或者,如果选择HSROC模型作为荟萃分析方法,则可以使用假定对称SROC曲线的HSROC模型(通过排除形状参数)。在不存在异质性的情况下,可以应用模型的固定效应等效模型。