School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran.
School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, 1684613114, Iran.
Mater Sci Eng C Mater Biol Appl. 2015 Oct;55:436-47. doi: 10.1016/j.msec.2015.05.065. Epub 2015 May 29.
In this study, 10 mol% ZrO2 was added to a 27CaO-5P2O5-68SiO2 (mol%) base composition synthesized via a simple sol-gel method. This composition is similar to that of a frequently investigated bioactive gel-glass. The effects of ZrO2 on the in vitro bioactivity and MG-63 cell proliferation of the glass and its derivative polycrystalline (glass-ceramic) powder were investigated. The samples were characterized using thermo-gravimetric and differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) coupled to energy dispersive X-ray spectroscopy (EDS). Release of Si, Ca, P and Zr into simulated body fluid (SBF) was determined by inductively coupled plasma (ICP). Upon heat treatment at 1000 °C, the glass powder crystallized into an apatite-wollastonite-zirconia glass-ceramic powder. Hydroxycarbonate apatite (HCA) formation on the surface of the glass and glass-ceramic particles containing ZrO2 was confirmed by FTIR and SEM. Addition of ZrO2 to the base glass composition decreased the rate of HCA formation in vitro from one day to three days, and hence, ZrO2 could be employed to control the rate of apatite formation. However, the rate of HCA formation on the glass-ceramic powder containing ZrO2 crystal was equal to that in the base glassy powder. Tests with a cultured human osteoblast-like MG-63 cells revealed that the glass and glass-ceramic materials stimulated cell proliferation, indicating that they are biocompatible and are not cytotoxic in vitro. Moreover, zirconia clearly increased osteoblast proliferation over that of the Zr-free samples. This increase is likely associated with the lower solubility of these samples and, consequently, a smaller variation in the media pH. Despite the low solubility of these materials, bioactivity was maintained, indicating that these glassy and polycrystalline powders are potential candidates for bone graft substitutes and bone cements with the special feature of radiopacity.
在这项研究中,向通过简单的溶胶-凝胶法合成的 27CaO-5P2O5-68SiO2(摩尔%)基底组成中添加了 10mol%的 ZrO2。该组成类似于经常研究的生物活性凝胶玻璃。研究了 ZrO2 对玻璃及其衍生的多晶(玻璃陶瓷)粉末的体外生物活性和 MG-63 细胞增殖的影响。使用热重和差示热分析(TG / DTA)、X 射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)结合能量色散 X 射线光谱(EDS)对样品进行了表征。通过电感耦合等离子体(ICP)测定 Si、Ca、P 和 Zr 向模拟体液(SBF)中的释放。在 1000°C 的热处理下,玻璃粉末结晶为磷灰石-硅灰石-氧化锆玻璃陶瓷粉末。通过 FTIR 和 SEM 确认了 ZrO2 存在于玻璃和玻璃陶瓷颗粒表面形成的羟基磷灰石(HCA)。在基础玻璃组成中添加 ZrO2 可将 HCA 在体外形成的速率从一天延长至三天,因此 ZrO2 可用于控制磷灰石的形成速率。然而,含 ZrO2 晶体的玻璃陶瓷粉末的 HCA 形成速率与基础玻璃粉末相同。对培养的人成骨样 MG-63 细胞进行的测试表明,玻璃和玻璃陶瓷材料刺激细胞增殖,表明它们在体外是生物相容的,没有细胞毒性。此外,氧化锆明显增加了成骨细胞的增殖,超过了不含 Zr 的样品。这种增加可能与这些样品的低溶解度有关,因此培养基 pH 值的变化较小。尽管这些材料的溶解度较低,但仍保持了生物活性,这表明这些玻璃态和多晶粉末是具有放射不透性的骨移植物替代物和骨水泥的潜在候选材料。