Suppr超能文献

使用两种不同的人工神经网络:概率神经网络(PNN)和自组织映射(SOM),将斑马鱼(Danio rerio)作为生物预警系统进行视频跟踪。

Video-tracking of zebrafish (Danio rerio) as a biological early warning system using two distinct artificial neural networks: Probabilistic neural network (PNN) and self-organizing map (SOM).

作者信息

Oliva Teles Luis, Fernandes Miguel, Amorim João, Vasconcelos Vitor

机构信息

Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal.

Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto, Praça Gomes Teixeira, 4099-002 Porto, Portugal.

出版信息

Aquat Toxicol. 2015 Aug;165:241-8. doi: 10.1016/j.aquatox.2015.06.008. Epub 2015 Jun 20.

Abstract

Biological early warning systems (BEWS) are becoming very important tools in ecotoxicological studies because they can detect changes in the behavior of organisms exposed to toxic substances. In this work, a video tracking system was fully developed to detect the presence of commercial bleach (NaOCl) in water in three different concentrations (0.0005%; 0.0010% and 0.0020% (v/v)) during one hour of exposure. Zebrafish was selected as the test organism because it is widely used in many different areas and studies. Two distinct statistical models were developed, using probabilistic neural network (PNN) and correspondence analysis associated with self-organizing map (SOM-CA). The diagnosis was based only in the analysis of a few behavioral components of the fish, namely: mean angular velocity, mean linear velocity, spatial dispersion, mean value of the X coordinate and mean value of the Y coordinate. Both models showed good results in their diagnosis capabilities. However, the overall performance (accuracy) was always superior in the PNN model. The worst result was with the SOM-CA model, at the lowest concentration (0.0005% v/v), achieving only 65% of correct diagnosis. The best result was with the PNN model, at the highest concentration (0.0020% v/v), achieving 94% of correct diagnosis.

摘要

生物预警系统(BEWS)正成为生态毒理学研究中非常重要的工具,因为它们能够检测接触有毒物质的生物体行为变化。在这项工作中,开发了一种视频跟踪系统,用于在一小时的暴露期间检测水中三种不同浓度(0.0005%;0.0010%和0.0020%(v/v))的商用漂白剂(次氯酸钠)的存在。斑马鱼被选作受试生物,因为它在许多不同领域和研究中被广泛使用。使用概率神经网络(PNN)以及与自组织映射相关的对应分析(SOM-CA)开发了两种不同的统计模型。诊断仅基于对鱼类一些行为成分的分析,即:平均角速度、平均线速度、空间离散度、X坐标平均值和Y坐标平均值。两种模型在诊断能力方面都显示出良好的结果。然而,PNN模型的整体性能(准确性)始终更优。最差的结果是SOM-CA模型在最低浓度(0.0005% v/v)时取得的,仅实现了65%的正确诊断率。最佳结果是PNN模型在最高浓度(0.0020% v/v)时取得的,实现了94%的正确诊断率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验