Suppr超能文献

使用多个分类器组合对MRI脑部图像进行监督分割。

Supervised segmentation of MRI brain images using combination of multiple classifiers.

作者信息

Ahmadvand Ali, Sharififar Mohammad, Daliri Mohammad Reza

机构信息

School of Computer Engineering, Iran University of Science and Technology (IUST), Tehran, Iran.

出版信息

Australas Phys Eng Sci Med. 2015 Jun;38(2):241-53. doi: 10.1007/s13246-015-0352-7. Epub 2015 Jun 2.

Abstract

Segmentation of different tissues is one of the initial and most critical tasks in different aspects of medical image processing. Manual segmentation of brain images resulted from magnetic resonance imaging is time consuming, so automatic image segmentation is widely used in this area. Ensemble based algorithms are very reliable and generalized methods for classification. In this paper, a supervised method named dynamic classifier selection-dynamic local training local tanimoto index, which is a member of combination of multiple classifiers (CMCs) methods is proposed. The proposed method uses dynamic local training sets instead of a full statics one and also it change the classifier rank criterion properly for brain tissue classification. Selection policy for combining the different decisions is implemented here and the K-nearest neighbor algorithm is used to find the best local classifier. Experimental results show that the proposed method can classify the real datasets of the internet brain segmentation repository better than all single classifiers in ensemble and produces significantly improvement on other CMCs methods.

摘要

不同组织的分割是医学图像处理各个方面的初始且最关键的任务之一。磁共振成像产生的脑图像手动分割耗时,因此自动图像分割在该领域被广泛使用。基于集成的算法是非常可靠且通用的分类方法。本文提出了一种名为动态分类器选择 - 动态局部训练局部谷本指数的监督方法,它是多分类器组合(CMC)方法的一员。所提出的方法使用动态局部训练集而非完整的静态训练集,并且还针对脑组织分类适当改变了分类器排序标准。这里实现了组合不同决策的选择策略,并使用K近邻算法来找到最佳局部分类器。实验结果表明,所提出的方法在对互联网脑部分割存储库的真实数据集进行分类时,比集成中的所有单个分类器都要好,并且在其他CMC方法上有显著改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验