Suppr超能文献

蛋白质晶体学中的迭代投影算法。II. 应用

Iterative projection algorithms in protein crystallography. II. Application.

作者信息

Lo Victor L, Kingston Richard L, Millane Rick P

机构信息

Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand.

School of Biological Sciences, The University of Auckland, Auckland, New Zealand.

出版信息

Acta Crystallogr A Found Adv. 2015 Jul;71(Pt 4):451-9. doi: 10.1107/S2053273315005574. Epub 2015 Jun 6.

Abstract

Iterative projection algorithms (IPAs) are a promising tool for protein crystallographic phase determination. Although related to traditional density-modification algorithms, IPAs have better convergence properties, and, as a result, can effectively overcome the phase problem given modest levels of structural redundancy. This is illustrated by applying IPAs to determine the electron densities of two protein crystals with fourfold non-crystallographic symmetry, starting with only the experimental diffraction amplitudes, a low-resolution molecular envelope and the position of the non-crystallographic axes. The algorithm returns electron densities that are sufficiently accurate for model building, allowing automated recovery of the known structures. This study indicates that IPAs should find routine application in protein crystallography, being capable of reconstructing electron densities starting with very little initial phase information.

摘要

迭代投影算法(IPAs)是蛋白质晶体学相位确定的一种很有前景的工具。尽管与传统的密度修正算法相关,但迭代投影算法具有更好的收敛特性,因此,在适度的结构冗余水平下能够有效克服相位问题。通过将迭代投影算法应用于确定具有四重非晶体学对称性的两种蛋白质晶体的电子密度可以说明这一点,开始时仅使用实验衍射振幅、低分辨率分子包络和非晶体学轴的位置。该算法返回的电子密度对于模型构建来说足够精确,能够自动恢复已知结构。这项研究表明,迭代投影算法应该在蛋白质晶体学中得到常规应用,它能够从极少的初始相位信息开始重建电子密度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验