Suppr超能文献

带时间窗车辆路径问题的基于自适应蜂群优化算法的顺序插入启发式算法

Sequential Insertion Heuristic with Adaptive Bee Colony Optimisation Algorithm for Vehicle Routing Problem with Time Windows.

作者信息

Jawarneh Sana, Abdullah Salwani

机构信息

Data Mining and Optimisation Research Group, Centre for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.

出版信息

PLoS One. 2015 Jul 1;10(7):e0130224. doi: 10.1371/journal.pone.0130224. eCollection 2015.

Abstract

This paper presents a bee colony optimisation (BCO) algorithm to tackle the vehicle routing problem with time window (VRPTW). The VRPTW involves recovering an ideal set of routes for a fleet of vehicles serving a defined number of customers. The BCO algorithm is a population-based algorithm that mimics the social communication patterns of honeybees in solving problems. The performance of the BCO algorithm is dependent on its parameters, so the online (self-adaptive) parameter tuning strategy is used to improve its effectiveness and robustness. Compared with the basic BCO, the adaptive BCO performs better. Diversification is crucial to the performance of the population-based algorithm, but the initial population in the BCO algorithm is generated using a greedy heuristic, which has insufficient diversification. Therefore the ways in which the sequential insertion heuristic (SIH) for the initial population drives the population toward improved solutions are examined. Experimental comparisons indicate that the proposed adaptive BCO-SIH algorithm works well across all instances and is able to obtain 11 best results in comparison with the best-known results in the literature when tested on Solomon's 56 VRPTW 100 customer instances. Also, a statistical test shows that there is a significant difference between the results.

摘要

本文提出了一种蜂群优化(BCO)算法来解决带时间窗车辆路径问题(VRPTW)。VRPTW涉及为服务一定数量客户的一组车辆找到理想的路径集合。BCO算法是一种基于种群的算法,它在解决问题时模仿蜜蜂的社会通信模式。BCO算法的性能取决于其参数,因此采用在线(自适应)参数调整策略来提高其有效性和鲁棒性。与基本的BCO相比,自适应BCO表现更好。多样化对于基于种群的算法的性能至关重要,但BCO算法中的初始种群是使用贪婪启发式方法生成的,其多样化不足。因此,研究了用于初始种群的顺序插入启发式(SIH)驱动种群朝着改进解发展的方式。实验比较表明,所提出的自适应BCO-SIH算法在所有实例上都表现良好,并且在对所罗门的56个VRPTW 100客户实例进行测试时,与文献中最知名的结果相比能够获得11个最佳结果。此外,一项统计测试表明结果之间存在显著差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c83e/4488911/2f410dde9ddd/pone.0130224.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验