Suppr超能文献

高通量RNA测序揭示了西部低地大猩猩和人类之间直系同源脑表达基因的结构差异。

High-throughput RNA sequencing reveals structural differences of orthologous brain-expressed genes between western lowland gorillas and humans.

作者信息

Lipovich Leonard, Hou Zhuo-Cheng, Jia Hui, Sinkler Christopher, McGowen Michael, Sterner Kirstin N, Weckle Amy, Sugalski Amara B, Pipes Lenore, Gatti Domenico L, Mason Christopher E, Sherwood Chet C, Hof Patrick R, Kuzawa Christopher W, Grossman Lawrence I, Goodman Morris, Wildman Derek E

机构信息

Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201.

Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, 48201.

出版信息

J Comp Neurol. 2016 Feb 1;524(2):288-308. doi: 10.1002/cne.23843. Epub 2015 Aug 20.

Abstract

The human brain and human cognitive abilities are strikingly different from those of other great apes despite relatively modest genome sequence divergence. However, little is presently known about the interspecies divergence in gene structure and transcription that might contribute to these phenotypic differences. To date, most comparative studies of gene structure in the brain have examined humans, chimpanzees, and macaque monkeys. To add to this body of knowledge, we analyze here the brain transcriptome of the western lowland gorilla (Gorilla gorilla gorilla), an African great ape species that is phylogenetically closely related to humans, but with a brain that is approximately one-third the size. Manual transcriptome curation from a sample of the planum temporale region of the neocortex revealed 12 protein-coding genes and one noncoding-RNA gene with exons in the gorilla unmatched by public transcriptome data from the orthologous human loci. These interspecies gene structure differences accounted for a total of 134 amino acids in proteins found in the gorilla that were absent from protein products of the orthologous human genes. Proteins varying in structure between human and gorilla were involved in immunity and energy metabolism, suggesting their relevance to phenotypic differences. This gorilla neocortical transcriptome comprises an empirical, not homology- or prediction-driven, resource for orthologous gene comparisons between human and gorilla. These findings provide a unique repository of the sequences and structures of thousands of genes transcribed in the gorilla brain, pointing to candidate genes that may contribute to the traits distinguishing humans from other closely related great apes.

摘要

尽管人类与其他大型猿类的基因组序列差异相对较小,但人类大脑和认知能力却与它们有着显著不同。然而,目前对于可能导致这些表型差异的基因结构和转录的种间差异了解甚少。迄今为止,大多数关于大脑基因结构的比较研究都集中在人类、黑猩猩和猕猴身上。为了增加这方面的知识,我们在此分析了西部低地大猩猩(Gorilla gorilla gorilla)的大脑转录组,这是一种非洲大型猿类,在系统发育上与人类密切相关,但其大脑大小约为人类的三分之一。通过对新皮质颞平面区域样本进行手动转录组筛选,发现了12个蛋白质编码基因和1个非编码RNA基因,其外显子在大猩猩中与直系同源人类基因座的公共转录组数据不匹配。这些种间基因结构差异总共导致大猩猩中发现的蛋白质中有134个氨基酸在直系同源人类基因的蛋白质产物中不存在。人类和大猩猩之间结构不同的蛋白质涉及免疫和能量代谢,表明它们与表型差异相关。这个大猩猩新皮质转录组为人类和大猩猩之间的直系同源基因比较提供了一个基于经验而非同源性或预测驱动的资源。这些发现提供了大猩猩大脑中数千个转录基因的序列和结构的独特库,指出了可能导致人类与其他密切相关大型猿类不同性状的候选基因。

相似文献

3
Tau gene (MAPT) sequence variation among primates.
Gene. 2004 Oct 27;341:313-22. doi: 10.1016/j.gene.2004.07.013.
4
Inference of gorilla demographic and selective history from whole-genome sequence data.
Mol Biol Evol. 2015 Mar;32(3):600-12. doi: 10.1093/molbev/msu394. Epub 2014 Dec 21.
5
Investigation of the RH locus in gorillas and chimpanzees.
J Mol Evol. 1996 Jun;42(6):658-68. doi: 10.1007/BF02338799.
7
Patterns of mandibular variation in Pan and Gorilla and implications for African ape taxonomy.
J Hum Evol. 2003 May;44(5):529-61. doi: 10.1016/s0047-2484(03)00027-7.
9
Size and shape dimorphism in great ape mandibles and implications for fossil species recognition.
Am J Phys Anthropol. 2006 Jan;129(1):82-98. doi: 10.1002/ajpa.20266.
10
Great ape DNA sequences reveal a reduced diversity and an expansion in humans.
Nat Genet. 2001 Feb;27(2):155-6. doi: 10.1038/84773.

引用本文的文献

1
Radiotherapy and breast cancer: finally, an lncRNA perspective on radiosensitivity and radioresistance.
Front Oncol. 2024 Sep 13;14:1437542. doi: 10.3389/fonc.2024.1437542. eCollection 2024.
3
Understanding the Role of lncRNAs in Nervous System Development.
Adv Exp Med Biol. 2017;1008:253-282. doi: 10.1007/978-981-10-5203-3_9.

本文引用的文献

1
Metabolic costs and evolutionary implications of human brain development.
Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13010-5. doi: 10.1073/pnas.1323099111. Epub 2014 Aug 25.
2
The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease.
Philos Trans R Soc Lond B Biol Sci. 2014 Sep 26;369(1652). doi: 10.1098/rstb.2013.0507.
3
DNA base detection using a single-layer MoS2.
ACS Nano. 2014 Aug 26;8(8):7914-22. doi: 10.1021/nn5029295. Epub 2014 Jul 15.
4
A high-resolution spatiotemporal atlas of gene expression of the developing mouse brain.
Neuron. 2014 Jul 16;83(2):309-323. doi: 10.1016/j.neuron.2014.05.033. Epub 2014 Jun 19.
5
Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.
PLoS Biol. 2014 May 27;12(5):e1001871. doi: 10.1371/journal.pbio.1001871. eCollection 2014 May.
6
Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes.
Mol Phylogenet Evol. 2014 Jun;75:165-83. doi: 10.1016/j.ympev.2014.02.023. Epub 2014 Feb 28.
7
8
New strategies to inhibit KEAP1 and the Cul3-based E3 ubiquitin ligases.
Biochem Soc Trans. 2014 Feb;42(1):103-7. doi: 10.1042/BST20130215.
9
Aerobic glycolysis in the primate brain: reconsidering the implications for growth and maintenance.
Brain Struct Funct. 2014 Jul;219(4):1149-67. doi: 10.1007/s00429-013-0662-z. Epub 2013 Nov 2.
10
Sense-antisense gene pairs: sequence, transcription, and structure are not conserved between human and mouse.
Front Genet. 2013 Sep 26;4:183. doi: 10.3389/fgene.2013.00183. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验