Song Jibin, Huang Peng, Duan Hongwei, Chen Xiaoyuan
Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda, Maryland 20892, United States.
School of Chemical and Biomedical Engineering, Nanyang Technological University , 70 Nanyang Drive, 637457 Singapore.
Acc Chem Res. 2015 Sep 15;48(9):2506-15. doi: 10.1021/acs.accounts.5b00059. Epub 2015 Jul 2.
Vesicular structures with compartmentalized, water-filled cavities, such as liposomes of natural and synthetic amphiphiles, have tremendous potential applications in nanomedicine. When block copolymers self-assemble, the result is polymersomes with tailored structural properties and built-in releasing mechanisms, controlled by stimuli-responsive polymer building blocks. More recently, chemists are becoming interested in multifunctional hybrid vesicles containing inorganic nanocrystals with unique optical, electronic, and magnetic properties. In this Account, we review our recent progress in assembling amphiphilic plasmonic nanostructures to create a new class of multifunctional hybrid vesicles and applying them towards cancer diagnosis and therapy. Localized surface plasmon resonance (LSPR) gives plasmonic nanomaterials a unique set of optical properties that are potentially useful for both biosensing and nanomedicine. For instance, the strong light scattering at their LSPR wavelength opens up the applications of plasmonic nanostructures in single particle plasmonic imaging. Their superior photothermal conversion properties, on the other hand, make them excellent transducers for photothermal ablation and contrast agents for photoacoustic imaging. Of particular note for ultrasensitive detection is that the confined electromagnetic field resulting from excitation of LSPR can give rise to highly efficient surface enhanced Raman scattering (SERS) for molecules in close proximity. We have explored several ways to combine well-defined plasmonic nanocrystals with amphiphilic polymer brushes of diverse chemical functionalities. In multiple systems, we have shown that the polymer grafts impart amphiphilicity-driven self-assembly to the hybrid nanoparticles. This has allowed us to synthesize well-defined vesicles in which we have embedded plasmonic nanocrystals in the shell of collapsed hydrophobic polymers. The hydrophilic brushes extend into external and interior aqueous environment to stabilize the vesicular structure. More importantly, we have demonstrated that strong interparticle coupling greatly enhances the optical properties (scattering, photothermal conversion, and SERS) in plasmonic vesicles. In combination with the loading capacity of the vesicles, this technology can provide unique opportunities for integrated diagnosis and therapy, multimodality combination therapy, and imaging-guided therapy. One key property differentiating the plasmonic vesicles from other vesicular structures containing nanocrystals is that we can tailor the interparticle coupling and disintegration of the plasmonic vesicles by altering structural parameters and conformational changes of the covalently bound polymer brushes. This gives us tremendous flexibility to engineer plasmonic vesicles for ultrasensitive detection and targeted therapy. Through bringing together advances in nanochemistry, polymer chemistry, self-assembly, and nanophotonics, we expect to further expand our capability of tailoring optical and structural characteristics of plasmonic vesicles to address challenges in medical settings.
具有分隔的、充满水的腔室的囊泡结构,如天然和合成两亲分子的脂质体,在纳米医学中具有巨大的潜在应用。当嵌段共聚物自组装时,会形成具有定制结构特性和内置释放机制的聚合物囊泡,其由刺激响应性聚合物构建块控制。最近,化学家们对包含具有独特光学、电子和磁性的无机纳米晶体的多功能混合囊泡产生了兴趣。在本综述中,我们回顾了我们在组装两亲性等离子体纳米结构以创建一类新型多功能混合囊泡并将其应用于癌症诊断和治疗方面的最新进展。局域表面等离子体共振(LSPR)赋予等离子体纳米材料一组独特的光学特性,这些特性在生物传感和纳米医学中都可能有用。例如,在其LSPR波长处的强光散射开启了等离子体纳米结构在单粒子等离子体成像中的应用。另一方面,它们卓越的光热转换特性使其成为光热消融的优秀换能器和光声成像的造影剂。对于超灵敏检测特别值得注意的是,由LSPR激发产生的受限电磁场可以为附近的分子产生高效的表面增强拉曼散射(SERS)。我们探索了几种将定义明确的等离子体纳米晶体与具有不同化学功能的两亲性聚合物刷相结合的方法。在多个系统中,我们已经表明聚合物接枝赋予混合纳米粒子两亲性驱动的自组装。这使我们能够合成定义明确的囊泡,其中我们将等离子体纳米晶体嵌入塌陷的疏水聚合物的壳中。亲水性刷延伸到外部和内部水环境中以稳定囊泡结构。更重要的是,我们已经证明强烈的粒子间耦合极大地增强了等离子体囊泡中的光学特性(散射、光热转换和SERS)。结合囊泡的负载能力,这项技术可以为综合诊断和治疗、多模态联合治疗以及成像引导治疗提供独特的机会。将等离子体囊泡与其他包含纳米晶体的囊泡结构区分开来的一个关键特性是,我们可以通过改变共价结合的聚合物刷的结构参数和构象变化来定制等离子体囊泡的粒子间耦合和解体。这为我们设计用于超灵敏检测和靶向治疗的等离子体囊泡提供了极大的灵活性。通过整合纳米化学、聚合物化学、自组装和纳米光子学方面的进展,我们期望进一步扩展我们定制等离子体囊泡光学和结构特性的能力,以应对医学环境中的挑战。