Kopps Anna M, Kang Jungkoo, Sherwin William B, Palsbøll Per J
Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands Evolution & Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
Marine Evolution and Conservation, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands IceLab, Umeå University, 901 87, Umeå, Sweden.
G3 (Bethesda). 2015 Jun 30;5(9):1815-26. doi: 10.1534/g3.115.019323.
Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies.
亲缘关系分析是生态和保护遗传学研究的重要支柱,可能具有深远影响。需要进行能处理一系列可能关系的功效分析。然而,此类分析很少被应用,而且使用基于遗传数据的亲缘关系推断的研究往往忽略了内在种群特征的影响。我们使用具有现实生活史参数的个体模型,研究了关于二元组正确分类到亲缘关系类别(亲缘关系类别分配;RCA)的11个问题。我们研究了遗传标记数量、标记类型(微卫星、单核苷酸多态性SNP或两者兼有)、次要等位基因频率、分型错误、交配系统以及不同人口统计条件下重叠世代数量的影响。我们发现:(i)遗传标记数量的增加提高了RCA的正确分类率,以至于高达>80%的一级表亲可以被正确分配;(ii)在亲缘关系类别、交配系统和重叠世代数量之间,以80%和95%的正确分类进行分配所需的遗传标记最小数量有所不同;(iii)通过添加额外的亲缘关系类别以及年龄和线粒体DNA数据,正确分类率得到了提高;(iv)如果有<800个SNP位点,微卫星和单核苷酸多态性数据的组合会提高正确分类率。本研究表明,诸如交配系统和重叠世代数量、生活史特征以及遗传标记特征等内在种群特征如何能够影响RCA研究的正确分类率。因此,针对特定物种的功效分析对于实证研究至关重要。