Suppr超能文献

通过已知结合剂的化学信息学建模、高通量筛选和实验验证发现天然产物衍生的5-HT1A受体结合剂。

Discovery of Natural Product-Derived 5-HT1A Receptor Binders by Cheminfomatics Modeling of Known Binders, High Throughput Screening and Experimental Validation.

作者信息

Luo Man, Reid Terry-Elinor, Wang Xiang Simon

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, Howard University, 2300 4th St. NW, Washington, DC 20059, USA.

出版信息

Comb Chem High Throughput Screen. 2015;18(7):685-92. doi: 10.2174/1386207318666150703113948.

Abstract

The human 5-hydroxytryptamine receptor subtype 1A (5-HT1A) is highly expressed in the raphe nuclei region and limbic structures; for that reason 5-HT1A has served as a promising target for treating human mood disorders and neurodegenerative diseases. We have developed binary quantitative structure-activity relationship (QSAR) models for 5- HT1A binding using data retrieved from the WOMBAT database and the k-Nearest Neighbor (kNN) machine learning method. A rigorous QSAR modeling and screening workflow had been followed, with extensive internal and external validation processes. The models' classification accuracies to discriminate 5-HT1A binders from the non-binders are as high as 96% for the external validation. These models were employed further to mine two major natural products screening libraries, i.e. TimTec Natural Product Library (NPL) and Natural Derivatives Library (NDL). In the end five screening hits were tested by radioligand binding assays with a success rate of 40%, and two Library compounds were confirmed to be binders at the μM concentration against the human 5-HT1A receptor. The combined application of rigorous QSAR modeling and model-based virtual screening presents a powerful means for profiling natural products compounds with important biomedical activities.

摘要

人类5-羟色胺受体1A亚型(5-HT1A)在中缝核区域和边缘结构中高度表达;因此,5-HT1A已成为治疗人类情绪障碍和神经退行性疾病的一个有前景的靶点。我们利用从WOMBAT数据库检索到的数据和k近邻(kNN)机器学习方法,开发了用于5-HT1A结合的二元定量构效关系(QSAR)模型。遵循了严格的QSAR建模和筛选工作流程,并进行了广泛的内部和外部验证过程。在外部验证中,这些模型区分5-HT1A结合剂和非结合剂的分类准确率高达96%。这些模型进一步用于挖掘两个主要的天然产物筛选库,即TimTec天然产物库(NPL)和天然衍生物库(NDL)。最后,通过放射性配体结合试验对5个筛选命中物进行了测试,成功率为40%,并确认有2种库化合物在微摩尔浓度下与人5-HT1A受体结合。严格的QSAR建模和基于模型的虚拟筛选的联合应用为分析具有重要生物医学活性的天然产物化合物提供了一种强大的手段。

相似文献

4
Discovery of new selective cytotoxic agents against Bcl-2 expressing cancer cells using ligand-based modeling.
Chem Biol Interact. 2016 Apr 25;250:12-26. doi: 10.1016/j.cbi.2016.03.006. Epub 2016 Mar 5.
6
On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design.
Comb Chem High Throughput Screen. 2011 Jul;14(6):450-74. doi: 10.2174/138620711795767893.
7
Improving virtual screening predictive accuracy of Human kallikrein 5 inhibitors using machine learning models.
Comput Biol Chem. 2017 Aug;69:110-119. doi: 10.1016/j.compbiolchem.2017.05.007. Epub 2017 May 29.
8
Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
J Chem Inf Model. 2008 May;48(5):997-1013. doi: 10.1021/ci700404c. Epub 2008 May 10.
10
Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.
Methods Mol Biol. 2011;685:111-33. doi: 10.1007/978-1-60761-931-4_6.

引用本文的文献

2
A review on machine learning approaches and trends in drug discovery.
Comput Struct Biotechnol J. 2021 Aug 12;19:4538-4558. doi: 10.1016/j.csbj.2021.08.011. eCollection 2021.
3
In silico approach in reveal traditional medicine plants pharmacological material basis.
Chin Med. 2018 Jun 19;13:33. doi: 10.1186/s13020-018-0190-0. eCollection 2018.

本文引用的文献

6
Combinatorial QSAR modeling of specificity and subtype selectivity of ligands binding to serotonin receptors 5HT1E and 5HT1F.
J Chem Inf Model. 2008 May;48(5):997-1013. doi: 10.1021/ci700404c. Epub 2008 May 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验