Suppr超能文献

CSER与eMERGE:电子健康记录中遗传信息显示的现状与潜在状况

CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record.

作者信息

Shirts Brian H, Salama Joseph S, Aronson Samuel J, Chung Wendy K, Gray Stacy W, Hindorff Lucia A, Jarvik Gail P, Plon Sharon E, Stoffel Elena M, Tarczy-Hornoch Peter Z, Van Allen Eliezer M, Weck Karen E, Chute Christopher G, Freimuth Robert R, Grundmeier Robert W, Hartzler Andrea L, Li Rongling, Peissig Peggy L, Peterson Josh F, Rasmussen Luke V, Starren Justin B, Williams Marc S, Overby Casey L

机构信息

Department of Laboratory Medicine, University of Washington, Seattle, WA, 98195, USA

Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, USA.

出版信息

J Am Med Inform Assoc. 2015 Nov;22(6):1231-42. doi: 10.1093/jamia/ocv065. Epub 2015 Jul 3.

Abstract

OBJECTIVE

Clinicians' ability to use and interpret genetic information depends upon how those data are displayed in electronic health records (EHRs). There is a critical need to develop systems to effectively display genetic information in EHRs and augment clinical decision support (CDS).

MATERIALS AND METHODS

The National Institutes of Health (NIH)-sponsored Clinical Sequencing Exploratory Research and Electronic Medical Records & Genomics EHR Working Groups conducted a multiphase, iterative process involving working group discussions and 2 surveys in order to determine how genetic and genomic information are currently displayed in EHRs, envision optimal uses for different types of genetic or genomic information, and prioritize areas for EHR improvement.

RESULTS

There is substantial heterogeneity in how genetic information enters and is documented in EHR systems. Most institutions indicated that genetic information was displayed in multiple locations in their EHRs. Among surveyed institutions, genetic information enters the EHR through multiple laboratory sources and through clinician notes. For laboratory-based data, the source laboratory was the main determinant of the location of genetic information in the EHR. The highest priority recommendation was to address the need to implement CDS mechanisms and content for decision support for medically actionable genetic information.

CONCLUSION

Heterogeneity of genetic information flow and importance of source laboratory, rather than clinical content, as a determinant of information representation are major barriers to using genetic information optimally in patient care. Greater effort to develop interoperable systems to receive and consistently display genetic and/or genomic information and alert clinicians to genomic-dependent improvements to clinical care is recommended.

摘要

目的

临床医生使用和解读基因信息的能力取决于这些数据在电子健康记录(EHR)中的显示方式。迫切需要开发系统,以便在EHR中有效显示基因信息并增强临床决策支持(CDS)。

材料与方法

美国国立卫生研究院(NIH)资助的临床测序探索性研究以及电子病历与基因组学EHR工作组开展了一个多阶段的迭代过程,包括工作组讨论和两项调查,以确定基因和基因组信息目前在EHR中的显示方式,设想不同类型基因或基因组信息的最佳用途,并确定EHR改进的优先领域。

结果

基因信息进入EHR系统以及在其中记录的方式存在很大异质性。大多数机构表示,基因信息在其EHR的多个位置显示。在接受调查的机构中,基因信息通过多个实验室来源以及临床医生记录进入EHR。对于基于实验室的数据,来源实验室是基因信息在EHR中位置的主要决定因素。最优先的建议是满足实施CDS机制和内容的需求,以支持对具有医学可操作性的基因信息进行决策。

结论

基因信息流的异质性以及来源实验室作为信息呈现决定因素(而非临床内容)的重要性,是在患者护理中最佳利用基因信息的主要障碍。建议加大力度开发可互操作的系统,以接收并一致显示基因和/或基因组信息,并提醒临床医生注意依赖基因组学的临床护理改进。

相似文献

1
CSER and eMERGE: current and potential state of the display of genetic information in the electronic health record.
J Am Med Inform Assoc. 2015 Nov;22(6):1231-42. doi: 10.1093/jamia/ocv065. Epub 2015 Jul 3.
2
Practical considerations for implementing genomic information resources. Experiences from eMERGE and CSER.
Appl Clin Inform. 2016 Sep 21;7(3):870-82. doi: 10.4338/ACI-2016-04-RA-0060.
3
A Pharmacogenomics Clinical Decision Support Service Based on FHIR and CDS Hooks.
Methods Inf Med. 2018 Dec;57(S 02):e115-e123. doi: 10.1055/s-0038-1676466. Epub 2019 Jan 3.
4
Technical desiderata for the integration of genomic data with clinical decision support.
J Biomed Inform. 2014 Oct;51:3-7. doi: 10.1016/j.jbi.2014.05.014. Epub 2014 Jun 12.
6
Implementing Genomic Clinical Decision Support for Drug-Based Precision Medicine.
CPT Pharmacometrics Syst Pharmacol. 2017 Mar;6(3):153-155. doi: 10.1002/psp4.12173.
7
Integrating cancer genomic data into electronic health records.
Genome Med. 2016 Oct 26;8(1):113. doi: 10.1186/s13073-016-0371-3.
8
Comparison of electronic health record system functionalities to support the patient recruitment process in clinical trials.
Int J Med Inform. 2014 Nov;83(11):860-8. doi: 10.1016/j.ijmedinf.2014.08.005. Epub 2014 Aug 25.
9
Archetype-based data warehouse environment to enable the reuse of electronic health record data.
Int J Med Inform. 2015 Sep;84(9):702-14. doi: 10.1016/j.ijmedinf.2015.05.016. Epub 2015 Jun 1.
10

引用本文的文献

1
Genome language modeling (GLM): a beginner's cheat sheet.
Biol Methods Protoc. 2025 Mar 25;10(1):bpaf022. doi: 10.1093/biomethods/bpaf022. eCollection 2025.
2
New Horizons for Consumer-Mediated Health Information Exchange.
Yearb Med Inform. 2024 Aug;33(1):179-190. doi: 10.1055/s-0044-1800741. Epub 2025 Apr 8.
4
An algorithm to identify patients aged 0-3 with rare genetic disorders.
Orphanet J Rare Dis. 2024 May 2;19(1):183. doi: 10.1186/s13023-024-03188-9.
5
Genetically guided precision medicine clinical decision support tools: a systematic review.
J Am Med Inform Assoc. 2024 Apr 19;31(5):1183-1194. doi: 10.1093/jamia/ocae033.
6
Facilitating Genetics Aware Clinical Decision Support: Putting the eMERGE Infrastructure into Practice.
ACI open. 2021 Jul;5(2):e54-e58. doi: 10.1055/s-0041-1729981. Epub 2021 Jul 6.
7
Diagnostic yield of genetic screening in a diverse, community-ascertained cohort.
Genome Med. 2023 Apr 18;15(1):26. doi: 10.1186/s13073-023-01174-7.
8
Barriers, interventions, and recommendations: Improving the genetic testing landscape.
Front Digit Health. 2022 Nov 1;4:961128. doi: 10.3389/fdgth.2022.961128. eCollection 2022.
9
Neptune: an environment for the delivery of genomic medicine.
Genet Med. 2021 Oct;23(10):1838-1846. doi: 10.1038/s41436-021-01230-w. Epub 2021 Jul 13.
10
Genomic considerations for FHIR®; eMERGE implementation lessons.
J Biomed Inform. 2021 Jun;118:103795. doi: 10.1016/j.jbi.2021.103795. Epub 2021 Apr 28.

本文引用的文献

1
Race and genomics in the Veterans Health Administration.
Am J Public Health. 2014 Sep;104 Suppl 4(Suppl 4):S522-4. doi: 10.2105/AJPH.2014.302202.
2
Technical desiderata for the integration of genomic data with clinical decision support.
J Biomed Inform. 2014 Oct;51:3-7. doi: 10.1016/j.jbi.2014.05.014. Epub 2014 Jun 12.
3
PG4KDS: a model for the clinical implementation of pre-emptive pharmacogenetics.
Am J Med Genet C Semin Med Genet. 2014 Mar;166C(1):45-55. doi: 10.1002/ajmg.c.31391. Epub 2014 Mar 11.
4
Clinical pharmacogenetics implementation: approaches, successes, and challenges.
Am J Med Genet C Semin Med Genet. 2014 Mar;166C(1):56-67. doi: 10.1002/ajmg.c.31390. Epub 2014 Mar 10.
7
Integrating pharmacogenetic information and clinical decision support into the electronic health record.
J Am Med Inform Assoc. 2014 May-Jun;21(3):522-8. doi: 10.1136/amiajnl-2013-001873. Epub 2013 Dec 3.
8
Integration of genomics into the electronic health record: mapping terra incognita.
Genet Med. 2013 Oct;15(10):757-60. doi: 10.1038/gim.2013.102.
9
The undiscovered country: the future of integrating genomic information into the EHR.
Genet Med. 2013 Oct;15(10):842-5. doi: 10.1038/gim.2013.130. Epub 2013 Sep 26.
10
Practical challenges in integrating genomic data into the electronic health record.
Genet Med. 2013 Oct;15(10):772-8. doi: 10.1038/gim.2013.131. Epub 2013 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验