Duong Pham Duy, Suh Young Soo
Department of Electrical Engineering, University of Ulsan, Namgu, Ulsan 680-749, Korea.
Sensors (Basel). 2015 Jul 3;15(7):15888-902. doi: 10.3390/s150715888.
There are many inertial sensor-based foot pose estimation algorithms. In this paper, we present a methodology to improve the accuracy of foot pose estimation using two low-cost distance sensors (VL6180) in addition to an inertial sensor unit. The distance sensor is a time-of-flight range finder and can measure distance up to 20 cm. A Kalman filter with 21 states is proposed to estimate both the calibration parameter (relative pose of distance sensors with respect to the inertial sensor unit) and foot pose. Once the calibration parameter is obtained, a Kalman filter with nine states can be used to estimate foot pose. Through four activities (walking, dancing step, ball kicking, jumping), it is shown that the proposed algorithm significantly improves the vertical position estimation.
有许多基于惯性传感器的足部姿态估计算法。在本文中,我们提出了一种方法,除了惯性传感器单元外,还使用两个低成本距离传感器(VL6180)来提高足部姿态估计的准确性。该距离传感器是一种飞行时间测距仪,可测量高达20厘米的距离。提出了一种具有21个状态的卡尔曼滤波器来估计校准参数(距离传感器相对于惯性传感器单元的相对姿态)和足部姿态。一旦获得校准参数,就可以使用具有九个状态的卡尔曼滤波器来估计足部姿态。通过四项活动(行走、舞步、踢球、跳跃)表明,所提出的算法显著提高了垂直位置估计的准确性。