Suppr超能文献

用于爆发性神经元爆发和尖峰同步转变的频域序参量。

Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons.

作者信息

Kim Sang-Yoon, Lim Woochang

机构信息

Computational Neuroscience Lab., Department of Science Education, Daegu National University of Education, Daegu, 705-115 Korea.

出版信息

Cogn Neurodyn. 2015 Aug;9(4):411-21. doi: 10.1007/s11571-015-9334-4. Epub 2015 Mar 14.

Abstract

We are interested in characterization of synchronization transitions of bursting neurons in the frequency domain. Instantaneous population firing rate (IPFR) [Formula: see text], which is directly obtained from the raster plot of neural spikes, is often used as a realistic collective quantity describing population activities in both the computational and the experimental neuroscience. For the case of spiking neurons, a realistic time-domain order parameter, based on [Formula: see text], was introduced in our recent work to characterize the spike synchronization transition. Unlike the case of spiking neurons, the IPFR [Formula: see text] of bursting neurons exhibits population behaviors with both the slow bursting and the fast spiking timescales. For our aim, we decompose the IPFR [Formula: see text] into the instantaneous population bursting rate [Formula: see text] (describing the bursting behavior) and the instantaneous population spike rate [Formula: see text] (describing the spiking behavior) via frequency filtering, and extend the realistic order parameter to the case of bursting neurons. Thus, we develop the frequency-domain bursting and spiking order parameters which are just the bursting and spiking "coherence factors" [Formula: see text] and [Formula: see text] of the bursting and spiking peaks in the power spectral densities of [Formula: see text] and [Formula: see text] (i.e., "signal to noise" ratio of the spectral peak height and its relative width). Through calculation of [Formula: see text] and [Formula: see text], we obtain the bursting and spiking thresholds beyond which the burst and spike synchronizations break up, respectively. Consequently, it is shown in explicit examples that the frequency-domain bursting and spiking order parameters may be usefully used for characterization of the bursting and the spiking transitions, respectively.

摘要

我们感兴趣的是在频域中对爆发性神经元的同步转变进行表征。瞬时群体发放率(IPFR)[公式:见正文],它直接从神经尖峰的光栅图中获得,在计算神经科学和实验神经科学中,常被用作描述群体活动的一个现实的集体量。对于发放脉冲的神经元的情况,在我们最近的工作中引入了一个基于[公式:见正文]的现实时域序参量,以表征尖峰同步转变。与发放脉冲的神经元的情况不同,爆发性神经元的IPFR [公式:见正文]表现出具有慢爆发和快发放时间尺度的群体行为。为了实现我们的目标,我们通过频率滤波将IPFR [公式:见正文]分解为瞬时群体爆发率[公式:见正文](描述爆发行为)和瞬时群体发放率[公式:见正文](描述发放行为),并将现实序参量扩展到爆发性神经元的情况。因此,我们开发了频域爆发和发放序参量,它们恰好是[公式:见正文]和[公式:见正文]的功率谱密度中爆发和发放峰值的爆发和发放“相干因子”[公式:见正文]和[公式:见正文](即频谱峰值高度与其相对宽度的“信噪比”)。通过计算[公式:见正文]和[公式:见正文],我们分别得到了爆发和发放阈值,超过这些阈值,爆发和发放同步就会分别瓦解。因此,在明确的例子中表明,频域爆发和发放序参量可分别有效地用于表征爆发和发放转变。

相似文献

1
Frequency-domain order parameters for the burst and spike synchronization transitions of bursting neurons.
Cogn Neurodyn. 2015 Aug;9(4):411-21. doi: 10.1007/s11571-015-9334-4. Epub 2015 Mar 14.
2
Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons.
Cogn Neurodyn. 2015 Apr;9(2):179-200. doi: 10.1007/s11571-014-9314-0. Epub 2014 Nov 29.
3
Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons.
Cogn Neurodyn. 2013 Dec;7(6):495-503. doi: 10.1007/s11571-013-9256-y. Epub 2013 May 8.
4
Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network.
Cogn Neurodyn. 2018 Jun;12(3):315-342. doi: 10.1007/s11571-017-9470-0. Epub 2018 Jan 10.
5
Spiking Neural P Systems with Communication on Request.
Int J Neural Syst. 2017 Dec;27(8):1750042. doi: 10.1142/S0129065717500423. Epub 2017 Aug 16.
6
Realistic thermodynamic and statistical-mechanical measures for neural synchronization.
J Neurosci Methods. 2014 Apr 15;226:161-170. doi: 10.1016/j.jneumeth.2013.12.013. Epub 2014 Jan 30.
7
8
Identifying crucial parameter correlations maintaining bursting activity.
PLoS Comput Biol. 2014 Jun 19;10(6):e1003678. doi: 10.1371/journal.pcbi.1003678. eCollection 2014 Jun.
9
Cluster burst synchronization in a scale-free network of inhibitory bursting neurons.
Cogn Neurodyn. 2020 Feb;14(1):69-94. doi: 10.1007/s11571-019-09546-9. Epub 2019 Jul 10.
10
Statistical-mechanical measure of stochastic spiking coherence in a population of inhibitory subthreshold neurons.
J Comput Neurosci. 2011 Nov;31(3):667-77. doi: 10.1007/s10827-011-0330-3. Epub 2011 May 3.

引用本文的文献

1
From abstract topology to real thermodynamic brain activity.
Cogn Neurodyn. 2017 Jun;11(3):283-292. doi: 10.1007/s11571-017-9431-7. Epub 2017 Mar 14.
2
Bursting dynamics remarkably improve the performance of neural networks on liquid computing.
Cogn Neurodyn. 2016 Oct;10(5):415-21. doi: 10.1007/s11571-016-9387-z. Epub 2016 Apr 28.

本文引用的文献

1
Realistic thermodynamic and statistical-mechanical measures for neural synchronization.
J Neurosci Methods. 2014 Apr 15;226:161-170. doi: 10.1016/j.jneumeth.2013.12.013. Epub 2014 Jan 30.
2
Coupling-induced population synchronization in an excitatory population of subthreshold Izhikevich neurons.
Cogn Neurodyn. 2013 Dec;7(6):495-503. doi: 10.1007/s11571-013-9256-y. Epub 2013 May 8.
3
Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling.
Cogn Neurodyn. 2013 Aug;7(4):341-9. doi: 10.1007/s11571-012-9237-6. Epub 2013 Jan 3.
4
Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.
Cogn Neurodyn. 2013 Jun;7(3):197-212. doi: 10.1007/s11571-012-9226-9. Epub 2012 Oct 25.
5
Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction.
Cogn Neurodyn. 2013 Apr;7(2):121-31. doi: 10.1007/s11571-012-9222-0. Epub 2012 Sep 28.
8
Phase synchronization of bursting neurons in clustered small-world networks.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 2):016211. doi: 10.1103/PhysRevE.86.016211. Epub 2012 Jul 13.
9
Burst synchronization transitions in a neuronal network of subnetworks.
Chaos. 2011 Mar;21(1):016110. doi: 10.1063/1.3559136.
10
Chaotic phase synchronization in small-world networks of bursting neurons.
Chaos. 2011 Mar;21(1):013127. doi: 10.1063/1.3565027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验