Suppr超能文献

定量稀疏阵列血管弹性成像:组织衰减和模量对比度对性能的影响。

Quantitative sparse array vascular elastography: the impact of tissue attenuation and modulus contrast on performance.

作者信息

Huntzicker Steven, Nayak Rohit, Doyley Marvin M

机构信息

University of Rochester , Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York 14627.

University of Rochester , Hajim School of Engineering and Applied Sciences, Department of Electrical and Computer Engineering, Rochester, New York 14627 ; University of Rochester , Hajim School of Engineering and Applied Sciences, Department of Biomedical Engineering, Rochester, New York 14627.

出版信息

J Med Imaging (Bellingham). 2014 Jul;1(2):027001. doi: 10.1117/1.JMI.1.2.027001. Epub 2014 Jul 4.

Abstract

Quantitative sparse array vascular elastography visualizes the shear modulus distribution within vascular tissues, information that clinicans could use to reduce the number of strokes each year. However, the low transmit power sparse array (SA) imaging could hamper the clinical usefulness of the resulting elastograms. In this study, we evaluated the performance of modulus elastograms recovered from simulated and physical vessel phantoms with varying attenuation coefficients (0.6, 1.5, and [Formula: see text]) and modulus contrasts ([Formula: see text], [Formula: see text], and [Formula: see text]) using SA imaging relative to those obtained with conventional linear array (CLA) and plane-wave (PW) imaging techniques. Plaques were visible in all modulus elastograms, but those produced using SA and PW contained less artifacts. The modulus contrast-to-noise ratio decreased rapidly with increasing modulus contrast and attenuation coefficient, but more quickly when SA imaging was performed than for CLA or PW. The errors incurred varied from 10.9% to 24% (CLA), 1.8% to 12% (SA), and [Formula: see text] (PW). Modulus elastograms produced with SA and PW imagings were not significantly different ([Formula: see text]). Despite the low transmit power, SA imaging can produce useful modulus elastograms in superficial organs, such as the carotid artery.

摘要

定量稀疏阵列血管弹性成像可显示血管组织内的剪切模量分布,临床医生可利用这些信息减少每年中风的数量。然而,低发射功率的稀疏阵列(SA)成像可能会妨碍所得弹性图的临床实用性。在本研究中,我们使用SA成像评估了从具有不同衰减系数(0.6、1.5和[公式:见原文])和模量对比度([公式:见原文]、[公式:见原文]和[公式:见原文])的模拟和物理血管模型中恢复的模量弹性图的性能,并与使用传统线性阵列(CLA)和平面波(PW)成像技术获得的弹性图进行比较。在所有模量弹性图中均可见斑块,但使用SA和PW生成的弹性图中的伪影较少。模量对比度噪声比随着模量对比度和衰减系数的增加而迅速降低,但在进行SA成像时比CLA或PW降低得更快。产生的误差在10.9%至24%(CLA)、1.8%至12%(SA)和[公式:见原文](PW)之间变化。使用SA和PW成像生成的模量弹性图无显著差异([公式:见原文])。尽管发射功率较低,但SA成像仍可在浅表器官(如颈动脉)中产生有用的模量弹性图。

相似文献

1
Quantitative sparse array vascular elastography: the impact of tissue attenuation and modulus contrast on performance.
J Med Imaging (Bellingham). 2014 Jul;1(2):027001. doi: 10.1117/1.JMI.1.2.027001. Epub 2014 Jul 4.
2
Noninvasive vascular elastography using plane-wave and sparse-array imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):332-42. doi: 10.1109/TUFFC.2013.2569.
4
Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1639-53. doi: 10.1109/TUFFC.2012.2370.
5
Reverberant magnetic resonance elastographic imaging using a single mechanical driver.
Phys Med Biol. 2023 Feb 27;68(5):055015. doi: 10.1088/1361-6560/acbbb7.
6
Comparative evaluation of strain-based and model-based modulus elastography.
Ultrasound Med Biol. 2005 Jun;31(6):787-802. doi: 10.1016/j.ultrasmedbio.2005.02.005.
7
A quantitative comparison of modulus images obtained using nanoindentation with strain elastograms.
Ultrasound Med Biol. 2004 Jul;30(7):899-918. doi: 10.1016/j.ultrasmedbio.2004.05.005.
8
10
Investigating the impact of spatial priors on the performance of model-based IVUS elastography.
Phys Med Biol. 2011 Nov 21;56(22):7223-46. doi: 10.1088/0031-9155/56/22/014. Epub 2011 Oct 28.

引用本文的文献

1
Quantitative assessment of ensemble coherency in contrast-free ultrasound microvasculature imaging.
Med Phys. 2021 Jul;48(7):3540-3558. doi: 10.1002/mp.14918. Epub 2021 May 30.
2
Adaptive background noise bias suppression in contrast-free ultrasound microvascular imaging.
Phys Med Biol. 2019 Dec 19;64(24):245015. doi: 10.1088/1361-6560/ab5879.
3
Non-invasive Small Vessel Imaging of Human Thyroid Using Motion-Corrected Spatiotemporal Clutter Filtering.
Ultrasound Med Biol. 2019 Apr;45(4):1010-1018. doi: 10.1016/j.ultrasmedbio.2018.10.028. Epub 2019 Feb 2.
5
Effect of Clot Stiffness on Recombinant Tissue Plasminogen Activator Lytic Susceptibility in Vitro.
Ultrasound Med Biol. 2018 Dec;44(12):2710-2727. doi: 10.1016/j.ultrasmedbio.2018.08.005. Epub 2018 Sep 26.
6
Frequency-sum beamforming for passive cavitation imaging.
J Acoust Soc Am. 2018 Jul;144(1):198. doi: 10.1121/1.5045328.
7
Visualizing Angle-Independent Principal Strains in the Longitudinal View of the Carotid Artery: Phantom and In Vivo Evaluation.
Ultrasound Med Biol. 2018 Jul;44(7):1379-1391. doi: 10.1016/j.ultrasmedbio.2018.03.012. Epub 2018 Apr 22.
8
Principal Strain Vascular Elastography: Simulation and Preliminary Clinical Evaluation.
Ultrasound Med Biol. 2017 Mar;43(3):682-699. doi: 10.1016/j.ultrasmedbio.2016.11.010. Epub 2017 Jan 2.
9
Contrast-Enhanced Quantitative Intravascular Elastography: The Impact of Microvasculature on Model-Based Elastography.
Ultrasound Med Biol. 2016 May;42(5):1167-81. doi: 10.1016/j.ultrasmedbio.2015.12.024. Epub 2016 Feb 26.

本文引用的文献

2
Noninvasive vascular elastography using plane-wave and sparse-array imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Feb;60(2):332-42. doi: 10.1109/TUFFC.2013.2569.
3
Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Aug;59(8):1639-53. doi: 10.1109/TUFFC.2012.2370.
4
Model-based elastography: a survey of approaches to the inverse elasticity problem.
Phys Med Biol. 2012 Feb 7;57(3):R35-73. doi: 10.1088/0031-9155/57/3/R35. Epub 2012 Jan 6.
5
Heart disease and stroke statistics--2012 update: a report from the American Heart Association.
Circulation. 2012 Jan 3;125(1):e2-e220. doi: 10.1161/CIR.0b013e31823ac046. Epub 2011 Dec 15.
6
Investigating the impact of spatial priors on the performance of model-based IVUS elastography.
Phys Med Biol. 2011 Nov 21;56(22):7223-46. doi: 10.1088/0031-9155/56/22/014. Epub 2011 Oct 28.
7
Estimating axial and lateral strain using a synthetic aperture elastographic imaging system.
Ultrasound Med Biol. 2011 Nov;37(11):1893-908. doi: 10.1016/j.ultrasmedbio.2011.07.009. Epub 2011 Oct 1.
8
An angular compounding technique using displacement projection for noninvasive ultrasound strain imaging of vessel cross-sections.
Ultrasound Med Biol. 2010 Nov;36(11):1947-56. doi: 10.1016/j.ultrasmedbio.2010.06.008. Epub 2010 Sep 20.
9
Full 2D displacement vector and strain tensor estimation for superficial tissue using beam-steered ultrasound imaging.
Phys Med Biol. 2010 Jun 7;55(11):3201-18. doi: 10.1088/0031-9155/55/11/014. Epub 2010 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验