Ali N, Javid K, Sajid M, Anwar Bég O
a Department of Mathematics and Statistics , International Islamic University , Islamabad 44000 , Pakistan.
b Theoretical Physics Division, PINSTECH , P.O. Nilore, Islamabad 44000 , Pakistan.
Comput Methods Biomech Biomed Engin. 2016;19(6):614-27. doi: 10.1080/10255842.2015.1055257. Epub 2015 Jul 9.
Peristaltic motion of a non-Newtonian Carreau fluid is analyzed in a curved channel under the long wavelength and low Reynolds number assumptions, as a simulation of digestive transport. The flow regime is shown to be governed by a dimensionless fourth-order, nonlinear, ordinary differential equation subject to no-slip wall boundary conditions. A well-tested finite difference method based on an iterative scheme is employed for the solution of the boundary value problem. The important phenomena of pumping and trapping associated with the peristaltic motion are investigated for various values of rheological parameters of Carreau fluid and curvature of the channel. An increase in Weissenberg number is found to generate a small eddy in the vicinity of the lower wall of the channel, which is enhanced with further increase in Weissenberg number. For shear-thinning bio-fluids (power-law rheological index, n < 1) greater Weissenberg number displaces the maximum velocity toward the upper wall. For shear-thickening bio-fluids, the velocity amplitude is enhanced markedly with increasing Weissenberg number.
作为消化运输的一种模拟,在长波长和低雷诺数假设下,分析了弯曲通道中非牛顿卡罗流体的蠕动运动。流动状态由一个无量纲的四阶非线性常微分方程控制,并满足无滑移壁面边界条件。采用基于迭代格式的经过充分测试的有限差分法来求解边值问题。针对卡罗流体的各种流变参数值和通道曲率,研究了与蠕动运动相关的泵送和俘获等重要现象。发现魏森贝格数的增加会在通道下壁附近产生一个小涡流,随着魏森贝格数的进一步增加,该涡流会增强。对于剪切变稀的生物流体(幂律流变指数,n < 1),较大的魏森贝格数会使最大速度向上壁移动。对于剪切增稠的生物流体,速度幅值会随着魏森贝格数的增加而显著增强。