School of Chemistry and Australian Research Council Centre of Excellence for Electromaterials Science, Monash University, Clayton, Victoria 3800, Australia.
ACS Appl Mater Interfaces. 2015 Aug 5;7(30):16632-44. doi: 10.1021/acsami.5b04219. Epub 2015 Jul 27.
A method has been developed for the efficient electrodeposition of cobalt and nickel nanostructures with the assistance of the Lindqvist ion Nb6O19. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry, and a range of electrochemical techniques have been used to characterize the morphology, composition, catalytic water oxidation activity and stability of the films in alkaline solution. SEM images show that films consisting of nanoparticles with diameters of ca. 30 to 40 nm are formed after 40-50 potential cycles of deposition. Nb and Co/Ni are detected in the films by EDX. ICP-MS results show an elemental ratio of 1:1 for Co:Nb and 1:3 for Ni:Nb, respectively. Raman spectra reveal the presence of both Nb6O19 and Co(OH)2/Ni(OH)2. The films exhibit excellent stability and efficiency for electrocatalytic water oxidation in alkaline solution. Turnover frequencies of 12.9 and 13.2 s(-1) were determined by rotating ring disk electrode voltammetry at an overpotential of 480 mV for Co and Ni films, respectively. Fourier transformed large amplitude alternating current (FTAC) voltammetry reveals an additional underlying oxidation process for Co under catalytic turnover conditions, which indicates that a Co(IV) species is involved in the efficient catalytic water oxidation reactions. FTAC voltammetric data also suggest that the Ni films undergoes a clear phase transformation upon aging in aqueous 1 M NaOH and the electrogenerated higher oxidation state Ni from β-NiOOH is the more active form of the catalyst.
已经开发出一种方法,通过 Lindqvist 离子 Nb6O19 的辅助,高效电沉积钴和镍纳米结构。扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、拉曼光谱、电感耦合等离子体质谱 (ICP-MS)、电感耦合等离子体发射光谱以及一系列电化学技术用于表征薄膜的形态、组成、在碱性溶液中的催化水氧化活性和稳定性。SEM 图像显示,在沉积 40-50 个电位循环后,形成了由直径约 30-40nm 的纳米颗粒组成的薄膜。EDX 检测到薄膜中存在 Nb 和 Co/Ni。ICP-MS 结果表明 Co:Nb 的元素比为 1:1,Ni:Nb 的元素比为 1:3。拉曼光谱表明存在 Nb6O19 和 Co(OH)2/Ni(OH)2。薄膜在碱性溶液中表现出优异的电催化水氧化稳定性和效率。在 480 mV 的过电势下,通过旋转环盘电极伏安法测定 Co 和 Ni 薄膜的周转频率分别为 12.9 和 13.2 s(-1)。傅里叶变换大振幅交流 (FTAC) 伏安法表明 Co 在催化周转条件下存在额外的底层氧化过程,这表明 Co(IV) 物种参与了高效的催化水氧化反应。FTAC 伏安数据还表明,Ni 薄膜在老化于 1M NaOH 水溶液中时经历了明显的相转变,从β-NiOOH 电生成的较高氧化态 Ni 是催化剂的更活性形式。