Suppr超能文献

具有25毫秒至125微秒时间窗口的BiFeO₃忆阻器中的单配对尖峰时间依赖可塑性。

Single pairing spike-timing dependent plasticity in BiFeO3 memristors with a time window of 25 ms to 125 μs.

作者信息

Du Nan, Kiani Mahdi, Mayr Christian G, You Tiangui, Bürger Danilo, Skorupa Ilona, Schmidt Oliver G, Schmidt Heidemarie

机构信息

Material Systems for Nanoelectronics, Faculty of Electrical and Information Engineering, Chemnitz University of Technology Chemnitz, Germany.

Neuromorphic Cognitive Systems Group, Institute of Neuroinformatics, University of Zurich and ETH Zurich Zurich, Switzerland.

出版信息

Front Neurosci. 2015 Jun 30;9:227. doi: 10.3389/fnins.2015.00227. eCollection 2015.

Abstract

Memristive devices are popular among neuromorphic engineers for their ability to emulate forms of spike-driven synaptic plasticity by applying specific voltage and current waveforms at their two terminals. In this paper, we investigate spike-timing dependent plasticity (STDP) with a single pairing of one presynaptic voltage spike and one post-synaptic voltage spike in a BiFeO3 memristive device. In most memristive materials the learning window is primarily a function of the material characteristics and not of the applied waveform. In contrast, we show that the analog resistive switching of the developed artificial synapses allows to adjust the learning time constant of the STDP function from 25 ms to 125 μs via the duration of applied voltage spikes. Also, as the induced weight change may degrade, we investigate the remanence of the resistance change for several hours after analog resistive switching, thus emulating the processes expected in biological synapses. As the power consumption is a major constraint in neuromorphic circuits, we show methods to reduce the consumed energy per setting pulse to only 4.5 pJ in the developed artificial synapses.

摘要

忆阻器件因其能够通过在其两个端子上施加特定的电压和电流波形来模拟尖峰驱动的突触可塑性形式,而受到神经形态工程师的青睐。在本文中,我们在一个BiFeO₃忆阻器件中研究了单个配对的一个突触前电压尖峰和一个突触后电压尖峰的尖峰时间依赖可塑性(STDP)。在大多数忆阻材料中,学习窗口主要是材料特性的函数,而不是所施加波形的函数。相比之下,我们表明,所开发的人工突触的模拟电阻开关允许通过施加电压尖峰的持续时间将STDP函数的学习时间常数从25毫秒调整到125微秒。此外,由于诱导的权重变化可能会退化,我们研究了模拟电阻开关后数小时内电阻变化的剩磁,从而模拟生物突触中预期的过程。由于功耗是神经形态电路中的一个主要限制因素,我们展示了在已开发的人工突触中将每个设置脉冲的消耗能量降低到仅4.5皮焦耳的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd18/4485154/593f20999750/fnins-09-00227-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验