Suppr超能文献

具核梭杆菌与结直肠癌中的 T 细胞

Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.

机构信息

Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.

Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts3Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts.

出版信息

JAMA Oncol. 2015 Aug;1(5):653-61. doi: 10.1001/jamaoncol.2015.1377.

Abstract

IMPORTANCE

Evidence indicates a complex link between gut microbiome, immunity, and intestinal tumorigenesis. To target the microbiota and immunity for colorectal cancer prevention and therapy, a better understanding of the relationship between microorganisms and immune cells in the tumor microenvironment is needed. Experimental evidence suggests that Fusobacterium nucleatum may promote colonic neoplasia development by downregulating antitumor T cell-mediated adaptive immunity.

OBJECTIVE

To test the hypothesis that a greater amount of F nucleatum in colorectal carcinoma tissue is associated with a lower density of T cells in tumor tissue.

DESIGN, SETTING, AND PARTICIPANTS: A cross-sectional analysis was conducted on 598 rectal and colon carcinoma cases in 2 US nationwide prospective cohort studies with follow-up through 2006, the Nurses' Health Study (participants enrolled in 1976) and the Health Professionals Follow-up Study (participants enrolled in 1986). Tissue collection and processing were performed from 2002 through 2008, and immunity assessment, 2008 through 2009. From 2013 through 2014, the amount of F nucleatum in colorectal carcinoma tissue was measured by quantitative polymerase chain reaction assay; we equally dichotomized positive cases (high vs low). Multivariable ordinal logistic regression analysis was conducted in 2014 to assess associations of the amount of F nucleatum with densities (quartiles) of T cells in tumor tissue, controlling for clinical and tumor molecular features, including microsatellite instability, CpG island methylator phenotype, long interspersed nucleotide element-1 (LINE-1) methylation, and KRAS, BRAF, and PIK3CA mutation status. We adjusted the 2-sided α level to .013 for multiple hypothesis testing.

MAIN OUTCOMES AND MEASURES

Densities of CD3+, CD8+, CD45RO (protein tyrosine phosphatase receptor type C [PTPRC])+, and FOXP3+ T cells in tumor tissue, determined by means of tissue microarray immunohistochemical analysis and computer-assisted image analysis.

RESULTS

F nucleatum was detected in colorectal carcinoma tissue in 76 (13%) of 598 cases. Compared with F nucleatum-negative cases, F nucleatum-high cases were inversely associated with the density of CD3+ T cells (for a unit increase in quartile categories of CD3+ T cells as an outcome: multivariable odds ratio, 0.47 [95% CI, 0.26-0.87]; P for trend = .006). The amount of F nucleatum was not significantly associated with the density of CD8+, CD45RO+, or FOXP3+ T cells (P fortrend = .24, .88, and .014, respectively).

CONCLUSIONS AND RELEVANCE

The amount of tissue F nucleatum is inversely associated with CD3+ T-cell density in colorectal carcinoma tissue. On validation, our human population data may provide an impetus for further investigations on potential interactive roles of Fusobacterium and host immunity in colon carcinogenesis.

摘要

背景:有证据表明肠道微生物群、免疫和肠道肿瘤发生之间存在复杂的联系。为了针对微生物群和免疫进行结直肠癌的预防和治疗,我们需要更好地了解肿瘤微环境中微生物和免疫细胞之间的关系。实验证据表明,具核梭杆菌可能通过下调抗肿瘤 T 细胞介导的适应性免疫来促进结直肠肿瘤的发展。

目的:检验以下假设,即结直肠癌组织中具核梭杆菌数量较多与肿瘤组织中 T 细胞密度较低有关。

设计、地点和参与者:对来自美国 2 项全国前瞻性队列研究的 598 例直肠和结肠癌病例进行了横断面分析,这些研究的随访时间截至 2006 年,分别为护士健康研究(参与者于 1976 年入组)和卫生专业人员随访研究(参与者于 1986 年入组)。组织采集和处理于 2002 年至 2008 年进行,免疫评估于 2008 年至 2009 年进行。2013 年至 2014 年,通过定量聚合酶链反应检测结直肠癌组织中具核梭杆菌的含量;我们将阳性病例(高 vs 低)均等分为 2 组。2014 年进行了多变量有序逻辑回归分析,以评估具核梭杆菌含量与肿瘤组织中 T 细胞密度(四分位数)之间的关联,控制了临床和肿瘤分子特征,包括微卫星不稳定性、CpG 岛甲基化表型、长散在核元件-1(LINE-1)甲基化以及 KRAS、BRAF 和 PIK3CA 突变状态。我们将双侧 α 水平调整为 0.013 以进行多重假设检验。

主要结局和测量指标:采用组织微阵列免疫组织化学分析和计算机辅助图像分析检测肿瘤组织中 CD3+、CD8+、CD45RO(蛋白酪氨酸磷酸酶受体 C 型[PTPRC])+和 FOXP3+T 细胞的密度。

结果:在 598 例病例中,76 例(13%)的结直肠癌组织中检测到具核梭杆菌。与具核梭杆菌阴性病例相比,具核梭杆菌阳性病例的 CD3+T 细胞密度呈反比(四分位数类别中 CD3+T 细胞每增加一个单位的多变量比值比为 0.47[95%CI,0.26-0.87];趋势 P 值=0.006)。具核梭杆菌含量与 CD8+、CD45RO+或 FOXP3+T 细胞的密度无显著相关性(趋势 P 值=0.24、0.88 和 0.014)。

结论和相关性:组织中具核梭杆菌的含量与结直肠癌组织中 CD3+T 细胞密度呈负相关。在验证后,我们的人群数据可能会推动对具核梭杆菌和宿主免疫在结直肠癌发生中的潜在交互作用的进一步研究。

相似文献

1
Fusobacterium nucleatum and T Cells in Colorectal Carcinoma.
JAMA Oncol. 2015 Aug;1(5):653-61. doi: 10.1001/jamaoncol.2015.1377.
2
Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.
World J Gastroenterol. 2016 Jan 14;22(2):557-66. doi: 10.3748/wjg.v22.i2.557.
3
Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis.
Gut. 2016 Dec;65(12):1973-1980. doi: 10.1136/gutjnl-2015-310101. Epub 2015 Aug 26.
4
in Colorectal Cancer Relates to Immune Response Differentially by Tumor Microsatellite Instability Status.
Cancer Immunol Res. 2018 Nov;6(11):1327-1336. doi: 10.1158/2326-6066.CIR-18-0174. Epub 2018 Sep 18.
5
Association of autophagy status with amount of Fusobacterium nucleatum in colorectal cancer.
J Pathol. 2020 Apr;250(4):397-408. doi: 10.1002/path.5381. Epub 2020 Feb 3.
6
Tumour CD274 (PD-L1) expression and T cells in colorectal cancer.
Gut. 2017 Aug;66(8):1463-1473. doi: 10.1136/gutjnl-2016-311421. Epub 2016 May 5.
7
Association of with Specific T-cell Subsets in the Colorectal Carcinoma Microenvironment.
Clin Cancer Res. 2021 May 15;27(10):2816-2826. doi: 10.1158/1078-0432.CCR-20-4009. Epub 2021 Feb 25.
8
MicroRNA let-7, T Cells, and Patient Survival in Colorectal Cancer.
Cancer Immunol Res. 2016 Nov;4(11):927-935. doi: 10.1158/2326-6066.CIR-16-0112. Epub 2016 Oct 13.
9
MicroRNA MIR21 and T Cells in Colorectal Cancer.
Cancer Immunol Res. 2016 Jan;4(1):33-40. doi: 10.1158/2326-6066.CIR-15-0084. Epub 2015 Sep 29.

引用本文的文献

1
Colorectal cancer prognosis: insights from the tumor immune microenvironment and gut microbiota.
J Gastrointest Oncol. 2025 Aug 30;16(4):1521-1533. doi: 10.21037/jgo-2025-517. Epub 2025 Aug 27.
3
-associated molecular and immunological alterations in colorectal cancer: Insights from a Norwegian cohort.
Front Immunol. 2025 Aug 14;16:1601423. doi: 10.3389/fimmu.2025.1601423. eCollection 2025.
4
Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation.
Microorganisms. 2025 Aug 15;13(8):1907. doi: 10.3390/microorganisms13081907.
8
Microbial manipulators: modulates the tumor immune microenvironment in colorectal cancer.
J Oral Microbiol. 2025 Aug 5;17(1):2544169. doi: 10.1080/20002297.2025.2544169. eCollection 2025.
9
Is Associated with Tumor Characteristics, Immune Microenvironment, and Survival in Appendiceal Cancer.
Microorganisms. 2025 Jul 11;13(7):1644. doi: 10.3390/microorganisms13071644.
10
Evaluation of gut leakage and bacterial translocation as efficacy biomarkers of immunotherapy in advanced non-small cell lung cancer (NSCLC).
Transl Lung Cancer Res. 2025 Jun 30;14(6):1961-1971. doi: 10.21037/tlcr-2024-1083. Epub 2025 Jun 24.

本文引用的文献

1
The future of immune checkpoint therapy.
Science. 2015 Apr 3;348(6230):56-61. doi: 10.1126/science.aaa8172.
2
Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack.
Immunity. 2015 Feb 17;42(2):344-355. doi: 10.1016/j.immuni.2015.01.010. Epub 2015 Feb 10.
3
Cancer and the gut microbiota: an unexpected link.
Sci Transl Med. 2015 Jan 21;7(271):271ps1. doi: 10.1126/scitranslmed.3010473.
5
Microbiota organization is a distinct feature of proximal colorectal cancers.
Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18321-6. doi: 10.1073/pnas.1406199111. Epub 2014 Dec 8.
6
The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints.
Cancer Discov. 2015 Jan;5(1):43-51. doi: 10.1158/2159-8290.CD-14-0863. Epub 2014 Oct 30.
7
Association between molecular subtypes of colorectal cancer and patient survival.
Gastroenterology. 2015 Jan;148(1):77-87.e2. doi: 10.1053/j.gastro.2014.09.038. Epub 2014 Sep 30.
8
Regional specialization within the intestinal immune system.
Nat Rev Immunol. 2014 Oct;14(10):667-85. doi: 10.1038/nri3738. Epub 2014 Sep 19.
9
The gut microbiota, bacterial metabolites and colorectal cancer.
Nat Rev Microbiol. 2014 Oct;12(10):661-72. doi: 10.1038/nrmicro3344. Epub 2014 Sep 8.
10
Gut microbial metabolism drives transformation of MSH2-deficient colon epithelial cells.
Cell. 2014 Jul 17;158(2):288-299. doi: 10.1016/j.cell.2014.04.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验