Suppr超能文献

使用新型抗miR-21洗脱支架进行局部微小RNA调节可有效预防实验性支架内再狭窄。

Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis.

作者信息

Wang Dong, Deuse Tobias, Stubbendorff Mandy, Chernogubova Ekaterina, Erben Reinhold G, Eken Suzanne M, Jin Hong, Li Yuhuang, Busch Albert, Heeger Christian-H, Behnisch Boris, Reichenspurner Hermann, Robbins Robert C, Spin Joshua M, Tsao Philip S, Schrepfer Sonja, Maegdefessel Lars

机构信息

From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.).

出版信息

Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):1945-53. doi: 10.1161/ATVBAHA.115.305597. Epub 2015 Jul 16.

Abstract

OBJECTIVE

Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) because of myointimal hyperplasia remains a major complication.

APPROACH AND RESULTS

We investigated the regulatory role of microRNAs in myointimal hyperplasia/ISR, using a humanized animal model in which balloon-injured human internal mammary arteries with or without stenting were transplanted into Rowett nude rats, followed by microRNA profiling. miR-21 was the only significantly upregulated candidate. In addition, miR-21 expression was increased in human tissue samples from patients with ISR compared with coronary artery disease specimen. We systemically repressed miR-21 via intravenous fluorescein-tagged-locked nucleic acid-anti-miR-21 (anti-21) in our humanized myointimal hyperplasia model. As expected, suppression of vascular miR-21 correlated dose dependently with reduced luminal obliteration. Furthermore, anti-21 did not impede reendothelialization. However, systemic anti-miR-21 had substantial off-target effects, lowering miR-21 expression in liver, heart, lung, and kidney with concomitant increase in serum creatinine levels. We therefore assessed the feasibility of local miR-21 suppression using anti-21-coated stents. Compared with bare-metal stents, anti-21-coated stents effectively reduced ISR, whereas no significant off-target effects could be observed.

CONCLUSION

This study demonstrates the efficacy of an anti-miR-coated stent for the reduction of ISR.

摘要

目的

尽管血管介入治疗的支架技术取得了进展,但因肌内膜增生导致的支架内再狭窄(ISR)仍是主要并发症。

方法与结果

我们使用一种人源化动物模型研究微小RNA在肌内膜增生/ISR中的调节作用,该模型将球囊损伤的带或不带支架的人乳内动脉移植到罗威特裸鼠体内,随后进行微小RNA谱分析。miR-21是唯一显著上调的候选微小RNA。此外,与冠状动脉疾病标本相比,ISR患者的人体组织样本中miR-21表达增加。在我们的人源化肌内膜增生模型中,我们通过静脉注射荧光素标记的锁核酸-抗miR-21(抗-21)系统性抑制miR-21。正如预期的那样,血管miR-21的抑制与管腔闭塞的减少呈剂量依赖性相关。此外,抗-21并不妨碍再内皮化。然而,系统性抗miR-21具有显著的脱靶效应,降低了肝脏、心脏、肺和肾脏中的miR-21表达,并伴随血清肌酐水平升高。因此,我们评估了使用抗-21包被支架局部抑制miR-21的可行性。与裸金属支架相比,抗-21包被支架有效减少了ISR,而未观察到明显的脱靶效应。

结论

本研究证明了抗miR包被支架在减少ISR方面的有效性。

相似文献

1
Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis.
Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):1945-53. doi: 10.1161/ATVBAHA.115.305597. Epub 2015 Jul 16.
2
Local Anti-miR Delivery: The Latest in the Arsenal of Drug-Eluting Stents.
Arterioscler Thromb Vasc Biol. 2015 Sep;35(9):1905-6. doi: 10.1161/ATVBAHA.115.306187.
6
Arsenic trioxide eluting stent reduces neointima formation in a rabbit iliac artery injury model.
Cardiovasc Res. 2006 Dec 1;72(3):483-93. doi: 10.1016/j.cardiores.2006.08.010. Epub 2006 Aug 23.

引用本文的文献

2
Unraveling the miRNA Puzzle in Atherosclerosis: Revolutionizing Diagnosis, Prognosis, and Therapeutic Approaches.
Curr Atheroscler Rep. 2024 Aug;26(8):395-410. doi: 10.1007/s11883-024-01216-4. Epub 2024 Jun 13.
3
Molecular micromanagement: DNA nanotechnology establishes spatio-temporal control for precision medicine.
Biophys Rev (Melville). 2020 Dec 24;1(1):011305. doi: 10.1063/5.0033378. eCollection 2020 Dec.
4
Similarities and Differences of Vascular Calcification in Diabetes and Chronic Kidney Disease.
Diabetes Metab Syndr Obes. 2024 Jan 10;17:165-192. doi: 10.2147/DMSO.S438618. eCollection 2024.
5
MicroRNAs and Cardiovascular Disease Risk.
Curr Cardiol Rep. 2024 Feb;26(2):51-60. doi: 10.1007/s11886-023-02014-1. Epub 2024 Jan 11.
6
The Roles of microRNAs in the Cardiovascular System.
Int J Mol Sci. 2023 Sep 19;24(18):14277. doi: 10.3390/ijms241814277.
7
Cardiac microRNAs: diagnostic and therapeutic potential.
Arch Med Sci. 2023 Aug 25;19(5):1360-1381. doi: 10.5114/aoms/169775. eCollection 2023.
8
MicroRNAs in cardiovascular diseases.
Med Rev (2021). 2022 Apr 26;2(2):140-168. doi: 10.1515/mr-2021-0001. eCollection 2022 Apr.
9
Incidence, risk factors, and clinical sequelae of incomplete stent apposition after sirolimus-eluting stent.
Int J Cardiovasc Imaging. 2023 Oct;39(10):1921-1926. doi: 10.1007/s10554-023-02896-w. Epub 2023 Jul 8.
10
Inflammatory microRNAs in cardiovascular pathology: another brick in the wall.
Front Immunol. 2023 May 18;14:1196104. doi: 10.3389/fimmu.2023.1196104. eCollection 2023.

本文引用的文献

1
Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways.
J Clin Invest. 2015 Jan;125(1):141-56. doi: 10.1172/JCI75852. Epub 2014 Nov 21.
2
Dichloroacetate prevents restenosis in preclinical animal models of vessel injury.
Nature. 2014 May 29;509(7502):641-4. doi: 10.1038/nature13232. Epub 2014 Apr 20.
3
Current treatment of in-stent restenosis.
J Am Coll Cardiol. 2014 Jun 24;63(24):2659-73. doi: 10.1016/j.jacc.2014.02.545. Epub 2014 Mar 13.
4
Micromanaging abdominal aortic aneurysms.
Int J Mol Sci. 2013 Jul 11;14(7):14374-94. doi: 10.3390/ijms140714374.
5
Treatment of HCV infection by targeting microRNA.
N Engl J Med. 2013 May 2;368(18):1685-94. doi: 10.1056/NEJMoa1209026. Epub 2013 Mar 27.
7
Pathogenic arterial remodeling: the good and bad of microRNAs.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1050-9. doi: 10.1152/ajpheart.00267.2012. Epub 2013 Feb 8.
8
miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes.
Diabetologia. 2013 Mar;56(3):663-74. doi: 10.1007/s00125-012-2804-x. Epub 2013 Jan 5.
9
MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles.
Nat Rev Drug Discov. 2012 Nov;11(11):860-72. doi: 10.1038/nrd3864. Epub 2012 Oct 19.
10
miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma.
BMC Cancer. 2012 Aug 29;12:378. doi: 10.1186/1471-2407-12-378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验