Suppr超能文献

计算理性:大脑、心智和机器智能的趋同范式。

Computational rationality: A converging paradigm for intelligence in brains, minds, and machines.

机构信息

Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.

Microsoft Research, Redmond, WA 98052, USA.

出版信息

Science. 2015 Jul 17;349(6245):273-8. doi: 10.1126/science.aac6076. Epub 2015 Jul 16.

Abstract

After growing up together, and mostly growing apart in the second half of the 20th century, the fields of artificial intelligence (AI), cognitive science, and neuroscience are reconverging on a shared view of the computational foundations of intelligence that promotes valuable cross-disciplinary exchanges on questions, methods, and results. We chart advances over the past several decades that address challenges of perception and action under uncertainty through the lens of computation. Advances include the development of representations and inferential procedures for large-scale probabilistic inference and machinery for enabling reflection and decisions about tradeoffs in effort, precision, and timeliness of computations. These tools are deployed toward the goal of computational rationality: identifying decisions with highest expected utility, while taking into consideration the costs of computation in complex real-world problems in which most relevant calculations can only be approximated. We highlight key concepts with examples that show the potential for interchange between computer science, cognitive science, and neuroscience.

摘要

在共同成长之后,人工智能 (AI)、认知科学和神经科学在 20 世纪后半叶大多分道扬镳,现在它们又重新汇聚到对智能的计算基础的共同认识上,这促进了在问题、方法和结果上有价值的跨学科交流。我们通过计算的视角来描绘过去几十年在解决不确定性下的感知和行动挑战方面所取得的进展。这些进展包括为大规模概率推理开发表示和推理程序,以及为反思和权衡努力、精度和计算及时性的决策提供的机制。这些工具被部署用于实现计算理性的目标:在复杂的现实世界问题中,识别具有最高预期效用的决策,同时考虑到计算成本,在这些问题中,大多数相关计算只能近似。我们用例子突出了关键概念,展示了计算机科学、认知科学和神经科学之间相互交流的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验