Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600-anexo-Bairro Santana, 90035-003, Porto Alegre, RS, Brazil.
Department of Biomedical Sciences, University of South Carolina School of Medicine - Greenville Campus, Greenville, SC, USA.
Mol Neurobiol. 2016 Aug;53(6):4019-4025. doi: 10.1007/s12035-015-9351-7. Epub 2015 Jul 21.
Autism is a neurodevelopmental disorder manifested by impaired social interaction, deficits in communication skills, restricted interests, and repetitive behaviors. In neurodevelopmental, neurodegenerative, and psychiatric disorders, glial cells undergo morphological, biochemical, and functional rearrangements, which are critical for neuronal development, neurotransmission, and synaptic connectivity. Cerebellar function is not limited to motor coordination but also contributes to cognition and may be affected in autism. Oligodendrocytes and specifically oligodendroglial precursors are highly susceptible to oxidative stress and excitotoxic insult. In the present study, we searched for evidence for developmental oligodendropathy in the context of autism by performing a network analysis of gene expression of cerebellar tissue. We created an in silico network model (OLIGO) showing the landscape of interactions between oligodendrocyte markers and demonstrated that more than 50 % (16 out of 30) of the genes within this model displayed significant changes of expression (corrected p value <0.05) in the cerebellum of autistic patients. In particular, we found up-regulation of OLIG2-, MBP-, OLIG1-, and MAG-specific oligodendrocyte markers. We postulate that aberrant expression of oligodendrocyte-specific genes, potentially related to changes in oligodendrogenesis, may contribute to abnormal cerebellar development, impaired myelination, and anomalous synaptic connectivity in autism spectrum disorders (ASD).
自闭症是一种神经发育障碍,表现为社交互动受损、沟通技能缺陷、兴趣受限和重复行为。在神经发育、神经退行性和精神疾病中,神经胶质细胞发生形态、生化和功能重排,这对神经元发育、神经递质传递和突触连接至关重要。小脑功能不仅限于运动协调,还参与认知,并且可能在自闭症中受到影响。少突胶质细胞,特别是少突胶质前体细胞,对氧化应激和兴奋毒性损伤非常敏感。在本研究中,我们通过对小脑组织基因表达进行网络分析,寻找自闭症背景下发育性少突胶质病变的证据。我们创建了一个 OLIGO 网络模型,展示了少突胶质细胞标记物之间相互作用的景观,并证明该模型内的 50%以上(30 个基因中的 16 个)基因在自闭症患者的小脑中有显著的表达变化(校正后的 p 值 <0.05)。特别是,我们发现 OLIG2、MBP、OLIG1 和 MAG 特异性少突胶质标记物的上调。我们推测,少突胶质细胞特异性基因的异常表达,可能与少突胶质细胞发生的变化有关,可能导致自闭症谱系障碍(ASD)中异常的小脑发育、髓鞘形成受损和异常的突触连接。