Magnusdottir Bergrun T, Nyquist Hans
Statistiska Institutionen, Stockholms Universitet, Stockholm, SE-10691, Sweden.
Stat Med. 2015 Dec 10;34(28):3714-23. doi: 10.1002/sim.6585. Epub 2015 Jul 16.
In this paper, we explore inference in multi-response, nonlinear models. By multi-response, we mean models with m > 1 response variables and accordingly m relations. Each parameter/explanatory variable may appear in one or more of the relations. We study a system estimation approach for simultaneous computation and inference of the model and (co)variance parameters. For illustration, we fit a bivariate Emax model to diabetes dose-response data. Further, the bivariate Emax model is used in a simulation study that compares the system estimation approach to equation-by-equation estimation. We conclude that overall, the system estimation approach performs better for the bivariate Emax model when there are dependencies among relations. The stronger the dependencies, the more we gain in precision by using system estimation rather than equation-by-equation estimation.
在本文中,我们探讨多响应非线性模型中的推断。所谓多响应,是指具有m>1个响应变量以及相应m个关系的模型。每个参数/解释变量可能出现在一个或多个关系中。我们研究一种用于同时计算和推断模型及(协)方差参数的系统估计方法。为作说明,我们将一个双变量Emax模型拟合到糖尿病剂量反应数据。此外,双变量Emax模型被用于一项模拟研究,该研究将系统估计方法与逐个方程估计进行比较。我们得出结论,总体而言,当关系之间存在相关性时,系统估计方法对于双变量Emax模型表现更佳。相关性越强,使用系统估计而非逐个方程估计在精度上的提升就越大。