Kwan Mei-Po, Xiao Ningchuan, Ding Guoxiang
Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Department of Geography, The Ohio State University, Columbus, OH, USA.
Geogr Anal. 2015 Jul;46(3):297-320. doi: 10.1111/gean.12040.
Due to the complexity and multidimensional characteristics of human activities, assessing the similarity of human activity patterns and classifying individuals with similar patterns remains highly challenging. This paper presents a new and unique methodology for evaluating the similarity among individual activity patterns. It conceptualizes multidimensional sequence alignment (MDSA) as a multiobjective optimization problem, and solves this problem with an evolutionary algorithm. The study utilizes sequence alignment to code multiple facets of human activities into multidimensional sequences, and to treat similarity assessment as a multiobjective optimization problem that aims to minimize the alignment cost for all dimensions simultaneously. A multiobjective optimization evolutionary algorithm (MOEA) is used to generate a diverse set of optimal or near-optimal alignment solutions. Evolutionary operators are specifically designed for this problem, and a local search method also is incorporated to improve the search ability of the algorithm. We demonstrate the effectiveness of our method by comparing it with a popular existing method called ClustalG using a set of 50 sequences. The results indicate that our method outperforms the existing method for most of our selected cases. The multiobjective evolutionary algorithm presented in this paper provides an effective approach for assessing activity pattern similarity, and a foundation for identifying distinctive groups of individuals with similar activity patterns.
由于人类活动具有复杂性和多维度特征,评估人类活动模式的相似性并对具有相似模式的个体进行分类仍然极具挑战性。本文提出了一种全新且独特的方法来评估个体活动模式之间的相似性。它将多维度序列比对(MDSA)概念化为一个多目标优化问题,并使用进化算法来解决这个问题。该研究利用序列比对将人类活动的多个方面编码为多维度序列,并将相似性评估视为一个多目标优化问题,旨在同时最小化所有维度的比对成本。使用多目标优化进化算法(MOEA)来生成一系列多样的最优或近似最优比对解决方案。针对这个问题专门设计了进化算子,并且还引入了局部搜索方法来提高算法的搜索能力。我们通过使用一组50个序列将我们的方法与一种名为ClustalG的流行现有方法进行比较,证明了我们方法的有效性。结果表明,在我们所选的大多数案例中,我们的方法优于现有方法。本文提出的多目标进化算法为评估活动模式相似性提供了一种有效方法,并为识别具有相似活动模式的独特个体群体奠定了基础。