Suppr超能文献

随机化作用不大,可比性才重要。

Randomization Does Not Help Much, Comparability Does.

作者信息

Saint-Mont Uwe

机构信息

Nordhausen University of Applied Sciences, Nordhausen, Germany.

出版信息

PLoS One. 2015 Jul 20;10(7):e0132102. doi: 10.1371/journal.pone.0132102. eCollection 2015.

Abstract

According to R.A. Fisher, randomization "relieves the experimenter from the anxiety of considering innumerable causes by which the data may be disturbed." Since, in particular, it is said to control for known and unknown nuisance factors that may considerably challenge the validity of a result, it has become very popular. This contribution challenges the received view. First, looking for quantitative support, we study a number of straightforward, mathematically simple models. They all demonstrate that the optimism surrounding randomization is questionable: In small to medium-sized samples, random allocation of units to treatments typically yields a considerable imbalance between the groups, i.e., confounding due to randomization is the rule rather than the exception. In the second part of this contribution, the reasoning is extended to a number of traditional arguments in favour of randomization. This discussion is rather non-technical, and sometimes touches on the rather fundamental Frequentist/Bayesian debate. However, the result of this analysis turns out to be quite similar: While the contribution of randomization remains doubtful, comparability contributes much to a compelling conclusion. Summing up, classical experimentation based on sound background theory and the systematic construction of exchangeable groups seems to be advisable.

摘要

根据R.A.费希尔的观点,随机化“使实验者无需为考虑可能干扰数据的无数因素而焦虑”。特别是,由于据说它能控制可能严重挑战结果有效性的已知和未知干扰因素,所以它变得非常流行。本文对这种公认的观点提出了质疑。首先,为了寻找定量支持,我们研究了一些简单直接、数学上也很简单的模型。所有这些模型都表明,围绕随机化的乐观态度是值得怀疑的:在中小规模样本中,将单位随机分配到不同处理组通常会导致组间出现相当大的不平衡,也就是说,随机化导致的混杂是常态而非例外。在本文的第二部分,我们将推理扩展到一些支持随机化的传统论据。这个讨论不太涉及技术层面,有时还会触及相当基础的频率主义者/贝叶斯主义者的争论。然而,分析结果却颇为相似:虽然随机化的作用仍然存疑,但可比性对得出令人信服的结论贡献很大。总之,基于可靠背景理论和可交换组的系统构建的经典实验似乎是可取的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d0/4507867/1b2be3c173a1/pone.0132102.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验